Loading…
A coordinate system invariant formulation for space-charge limited current with nonzero injection velocity
Recent studies have extended the classical space-charge limited current (SCLC) solution in a non-magnetic, planar diode with zero injection velocity to other geometries using variational calculus (VC). We further extend VC to solve for SCLC with a non-relativistic, monoenergetic injection velocity f...
Saved in:
Published in: | Plasma sources science & technology 2022-09, Vol.31 (9), p.95002 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c280t-f8ffa365cb91db401c6a9564034592ffd324da74c728dd2d5a4a69955ed823b63 |
---|---|
cites | cdi_FETCH-LOGICAL-c280t-f8ffa365cb91db401c6a9564034592ffd324da74c728dd2d5a4a69955ed823b63 |
container_end_page | |
container_issue | 9 |
container_start_page | 95002 |
container_title | Plasma sources science & technology |
container_volume | 31 |
creator | Halpern, Jacob M Darr, Adam M Harsha, N R Sree Garner, Allen L |
description | Recent studies have extended the classical space-charge limited current (SCLC) solution in a non-magnetic, planar diode with zero injection velocity to other geometries using variational calculus (VC). We further extend VC to solve for SCLC with a non-relativistic, monoenergetic injection velocity from first principles for nonplanar diodes. By extremizing either the current or a functional of the electric field (and not its derivative), we demonstrate that VC can find either the bifurcation or the SCLC solution, respectively. The bifurcation solution is characterized by the onset of particle reflection, resulting in a singularity in the derivative of the electric field at the virtual cathode, physically analogous to the singularity at the cathode in SCLC for zero injection velocity. Alternatively, using VC to extremize a functional of the potential and its gradient (electric field) yields the maximum current SCLC result. We then derive the SCLC solutions in cylindrical and spherical diodes; additionally, we develop a method to determine SCLC numerically and the bifurcation solution exactly for any orthogonal geometry. Implications for the potential profile and virtual cathode are discussed, especially the behavior for other geometries. |
doi_str_mv | 10.1088/1361-6595/ac89a9 |
format | article |
fullrecord | <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_iop_journals_10_1088_1361_6595_ac89a9</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>psstac89a9</sourcerecordid><originalsourceid>FETCH-LOGICAL-c280t-f8ffa365cb91db401c6a9564034592ffd324da74c728dd2d5a4a69955ed823b63</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EEqWwZ-kPINR2YtdeVhUvqRIbWEdTP6ijJK5styh8PQlF7FjNaHTP1eggdEvJPSVSLmgpaCG44gvQUoE6Q7O_0zmaESXKgjDOLtFVSg0hlEq2nKFmhXUI0fgessVpSNl22PdHiB76jF2I3aGF7EM_7TjtQdtC7yB-WNz6zmdrsD7EaMfwp8873If-y8YwdjRW_3BH2wbt83CNLhy0yd78zjl6f3x4Wz8Xm9enl_VqU2gmSS6cdA5KwfVWUbOtCNUCFBcVKSuumHOmZJWBZaWXTBrDDIcKhFKcWyNZuRXlHJFTr44hpWhdvY--gzjUlNSTq3oSU09i6pOrEbk7IT7s6yYcYj8--H_8Gxx9bdg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A coordinate system invariant formulation for space-charge limited current with nonzero injection velocity</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Halpern, Jacob M ; Darr, Adam M ; Harsha, N R Sree ; Garner, Allen L</creator><creatorcontrib>Halpern, Jacob M ; Darr, Adam M ; Harsha, N R Sree ; Garner, Allen L</creatorcontrib><description>Recent studies have extended the classical space-charge limited current (SCLC) solution in a non-magnetic, planar diode with zero injection velocity to other geometries using variational calculus (VC). We further extend VC to solve for SCLC with a non-relativistic, monoenergetic injection velocity from first principles for nonplanar diodes. By extremizing either the current or a functional of the electric field (and not its derivative), we demonstrate that VC can find either the bifurcation or the SCLC solution, respectively. The bifurcation solution is characterized by the onset of particle reflection, resulting in a singularity in the derivative of the electric field at the virtual cathode, physically analogous to the singularity at the cathode in SCLC for zero injection velocity. Alternatively, using VC to extremize a functional of the potential and its gradient (electric field) yields the maximum current SCLC result. We then derive the SCLC solutions in cylindrical and spherical diodes; additionally, we develop a method to determine SCLC numerically and the bifurcation solution exactly for any orthogonal geometry. Implications for the potential profile and virtual cathode are discussed, especially the behavior for other geometries.</description><identifier>ISSN: 0963-0252</identifier><identifier>EISSN: 1361-6595</identifier><identifier>DOI: 10.1088/1361-6595/ac89a9</identifier><identifier>CODEN: PSTEEU</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>electron beams ; electron emission ; space-charge limited current ; variational calculus</subject><ispartof>Plasma sources science & technology, 2022-09, Vol.31 (9), p.95002</ispartof><rights>2022 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c280t-f8ffa365cb91db401c6a9564034592ffd324da74c728dd2d5a4a69955ed823b63</citedby><cites>FETCH-LOGICAL-c280t-f8ffa365cb91db401c6a9564034592ffd324da74c728dd2d5a4a69955ed823b63</cites><orcidid>0000-0002-4591-1639 ; 0000-0003-2882-8996 ; 0000-0001-5416-7437 ; 0000-0001-9370-8160</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Halpern, Jacob M</creatorcontrib><creatorcontrib>Darr, Adam M</creatorcontrib><creatorcontrib>Harsha, N R Sree</creatorcontrib><creatorcontrib>Garner, Allen L</creatorcontrib><title>A coordinate system invariant formulation for space-charge limited current with nonzero injection velocity</title><title>Plasma sources science & technology</title><addtitle>PSST</addtitle><addtitle>Plasma Sources Sci. Technol</addtitle><description>Recent studies have extended the classical space-charge limited current (SCLC) solution in a non-magnetic, planar diode with zero injection velocity to other geometries using variational calculus (VC). We further extend VC to solve for SCLC with a non-relativistic, monoenergetic injection velocity from first principles for nonplanar diodes. By extremizing either the current or a functional of the electric field (and not its derivative), we demonstrate that VC can find either the bifurcation or the SCLC solution, respectively. The bifurcation solution is characterized by the onset of particle reflection, resulting in a singularity in the derivative of the electric field at the virtual cathode, physically analogous to the singularity at the cathode in SCLC for zero injection velocity. Alternatively, using VC to extremize a functional of the potential and its gradient (electric field) yields the maximum current SCLC result. We then derive the SCLC solutions in cylindrical and spherical diodes; additionally, we develop a method to determine SCLC numerically and the bifurcation solution exactly for any orthogonal geometry. Implications for the potential profile and virtual cathode are discussed, especially the behavior for other geometries.</description><subject>electron beams</subject><subject>electron emission</subject><subject>space-charge limited current</subject><subject>variational calculus</subject><issn>0963-0252</issn><issn>1361-6595</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOwzAQRS0EEqWwZ-kPINR2YtdeVhUvqRIbWEdTP6ijJK5styh8PQlF7FjNaHTP1eggdEvJPSVSLmgpaCG44gvQUoE6Q7O_0zmaESXKgjDOLtFVSg0hlEq2nKFmhXUI0fgessVpSNl22PdHiB76jF2I3aGF7EM_7TjtQdtC7yB-WNz6zmdrsD7EaMfwp8873If-y8YwdjRW_3BH2wbt83CNLhy0yd78zjl6f3x4Wz8Xm9enl_VqU2gmSS6cdA5KwfVWUbOtCNUCFBcVKSuumHOmZJWBZaWXTBrDDIcKhFKcWyNZuRXlHJFTr44hpWhdvY--gzjUlNSTq3oSU09i6pOrEbk7IT7s6yYcYj8--H_8Gxx9bdg</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Halpern, Jacob M</creator><creator>Darr, Adam M</creator><creator>Harsha, N R Sree</creator><creator>Garner, Allen L</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4591-1639</orcidid><orcidid>https://orcid.org/0000-0003-2882-8996</orcidid><orcidid>https://orcid.org/0000-0001-5416-7437</orcidid><orcidid>https://orcid.org/0000-0001-9370-8160</orcidid></search><sort><creationdate>20220901</creationdate><title>A coordinate system invariant formulation for space-charge limited current with nonzero injection velocity</title><author>Halpern, Jacob M ; Darr, Adam M ; Harsha, N R Sree ; Garner, Allen L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c280t-f8ffa365cb91db401c6a9564034592ffd324da74c728dd2d5a4a69955ed823b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>electron beams</topic><topic>electron emission</topic><topic>space-charge limited current</topic><topic>variational calculus</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Halpern, Jacob M</creatorcontrib><creatorcontrib>Darr, Adam M</creatorcontrib><creatorcontrib>Harsha, N R Sree</creatorcontrib><creatorcontrib>Garner, Allen L</creatorcontrib><collection>CrossRef</collection><jtitle>Plasma sources science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Halpern, Jacob M</au><au>Darr, Adam M</au><au>Harsha, N R Sree</au><au>Garner, Allen L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A coordinate system invariant formulation for space-charge limited current with nonzero injection velocity</atitle><jtitle>Plasma sources science & technology</jtitle><stitle>PSST</stitle><addtitle>Plasma Sources Sci. Technol</addtitle><date>2022-09-01</date><risdate>2022</risdate><volume>31</volume><issue>9</issue><spage>95002</spage><pages>95002-</pages><issn>0963-0252</issn><eissn>1361-6595</eissn><coden>PSTEEU</coden><abstract>Recent studies have extended the classical space-charge limited current (SCLC) solution in a non-magnetic, planar diode with zero injection velocity to other geometries using variational calculus (VC). We further extend VC to solve for SCLC with a non-relativistic, monoenergetic injection velocity from first principles for nonplanar diodes. By extremizing either the current or a functional of the electric field (and not its derivative), we demonstrate that VC can find either the bifurcation or the SCLC solution, respectively. The bifurcation solution is characterized by the onset of particle reflection, resulting in a singularity in the derivative of the electric field at the virtual cathode, physically analogous to the singularity at the cathode in SCLC for zero injection velocity. Alternatively, using VC to extremize a functional of the potential and its gradient (electric field) yields the maximum current SCLC result. We then derive the SCLC solutions in cylindrical and spherical diodes; additionally, we develop a method to determine SCLC numerically and the bifurcation solution exactly for any orthogonal geometry. Implications for the potential profile and virtual cathode are discussed, especially the behavior for other geometries.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6595/ac89a9</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4591-1639</orcidid><orcidid>https://orcid.org/0000-0003-2882-8996</orcidid><orcidid>https://orcid.org/0000-0001-5416-7437</orcidid><orcidid>https://orcid.org/0000-0001-9370-8160</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0963-0252 |
ispartof | Plasma sources science & technology, 2022-09, Vol.31 (9), p.95002 |
issn | 0963-0252 1361-6595 |
language | eng |
recordid | cdi_iop_journals_10_1088_1361_6595_ac89a9 |
source | Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List) |
subjects | electron beams electron emission space-charge limited current variational calculus |
title | A coordinate system invariant formulation for space-charge limited current with nonzero injection velocity |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T09%3A37%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20coordinate%20system%20invariant%20formulation%20for%20space-charge%20limited%20current%20with%20nonzero%20injection%20velocity&rft.jtitle=Plasma%20sources%20science%20&%20technology&rft.au=Halpern,%20Jacob%20M&rft.date=2022-09-01&rft.volume=31&rft.issue=9&rft.spage=95002&rft.pages=95002-&rft.issn=0963-0252&rft.eissn=1361-6595&rft.coden=PSTEEU&rft_id=info:doi/10.1088/1361-6595/ac89a9&rft_dat=%3Ciop_cross%3Epsstac89a9%3C/iop_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c280t-f8ffa365cb91db401c6a9564034592ffd324da74c728dd2d5a4a69955ed823b63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |