Loading…

A coordinate system invariant formulation for space-charge limited current with nonzero injection velocity

Recent studies have extended the classical space-charge limited current (SCLC) solution in a non-magnetic, planar diode with zero injection velocity to other geometries using variational calculus (VC). We further extend VC to solve for SCLC with a non-relativistic, monoenergetic injection velocity f...

Full description

Saved in:
Bibliographic Details
Published in:Plasma sources science & technology 2022-09, Vol.31 (9), p.95002
Main Authors: Halpern, Jacob M, Darr, Adam M, Harsha, N R Sree, Garner, Allen L
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c280t-f8ffa365cb91db401c6a9564034592ffd324da74c728dd2d5a4a69955ed823b63
cites cdi_FETCH-LOGICAL-c280t-f8ffa365cb91db401c6a9564034592ffd324da74c728dd2d5a4a69955ed823b63
container_end_page
container_issue 9
container_start_page 95002
container_title Plasma sources science & technology
container_volume 31
creator Halpern, Jacob M
Darr, Adam M
Harsha, N R Sree
Garner, Allen L
description Recent studies have extended the classical space-charge limited current (SCLC) solution in a non-magnetic, planar diode with zero injection velocity to other geometries using variational calculus (VC). We further extend VC to solve for SCLC with a non-relativistic, monoenergetic injection velocity from first principles for nonplanar diodes. By extremizing either the current or a functional of the electric field (and not its derivative), we demonstrate that VC can find either the bifurcation or the SCLC solution, respectively. The bifurcation solution is characterized by the onset of particle reflection, resulting in a singularity in the derivative of the electric field at the virtual cathode, physically analogous to the singularity at the cathode in SCLC for zero injection velocity. Alternatively, using VC to extremize a functional of the potential and its gradient (electric field) yields the maximum current SCLC result. We then derive the SCLC solutions in cylindrical and spherical diodes; additionally, we develop a method to determine SCLC numerically and the bifurcation solution exactly for any orthogonal geometry. Implications for the potential profile and virtual cathode are discussed, especially the behavior for other geometries.
doi_str_mv 10.1088/1361-6595/ac89a9
format article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_iop_journals_10_1088_1361_6595_ac89a9</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>psstac89a9</sourcerecordid><originalsourceid>FETCH-LOGICAL-c280t-f8ffa365cb91db401c6a9564034592ffd324da74c728dd2d5a4a69955ed823b63</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EEqWwZ-kPINR2YtdeVhUvqRIbWEdTP6ijJK5styh8PQlF7FjNaHTP1eggdEvJPSVSLmgpaCG44gvQUoE6Q7O_0zmaESXKgjDOLtFVSg0hlEq2nKFmhXUI0fgessVpSNl22PdHiB76jF2I3aGF7EM_7TjtQdtC7yB-WNz6zmdrsD7EaMfwp8873If-y8YwdjRW_3BH2wbt83CNLhy0yd78zjl6f3x4Wz8Xm9enl_VqU2gmSS6cdA5KwfVWUbOtCNUCFBcVKSuumHOmZJWBZaWXTBrDDIcKhFKcWyNZuRXlHJFTr44hpWhdvY--gzjUlNSTq3oSU09i6pOrEbk7IT7s6yYcYj8--H_8Gxx9bdg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A coordinate system invariant formulation for space-charge limited current with nonzero injection velocity</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Halpern, Jacob M ; Darr, Adam M ; Harsha, N R Sree ; Garner, Allen L</creator><creatorcontrib>Halpern, Jacob M ; Darr, Adam M ; Harsha, N R Sree ; Garner, Allen L</creatorcontrib><description>Recent studies have extended the classical space-charge limited current (SCLC) solution in a non-magnetic, planar diode with zero injection velocity to other geometries using variational calculus (VC). We further extend VC to solve for SCLC with a non-relativistic, monoenergetic injection velocity from first principles for nonplanar diodes. By extremizing either the current or a functional of the electric field (and not its derivative), we demonstrate that VC can find either the bifurcation or the SCLC solution, respectively. The bifurcation solution is characterized by the onset of particle reflection, resulting in a singularity in the derivative of the electric field at the virtual cathode, physically analogous to the singularity at the cathode in SCLC for zero injection velocity. Alternatively, using VC to extremize a functional of the potential and its gradient (electric field) yields the maximum current SCLC result. We then derive the SCLC solutions in cylindrical and spherical diodes; additionally, we develop a method to determine SCLC numerically and the bifurcation solution exactly for any orthogonal geometry. Implications for the potential profile and virtual cathode are discussed, especially the behavior for other geometries.</description><identifier>ISSN: 0963-0252</identifier><identifier>EISSN: 1361-6595</identifier><identifier>DOI: 10.1088/1361-6595/ac89a9</identifier><identifier>CODEN: PSTEEU</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>electron beams ; electron emission ; space-charge limited current ; variational calculus</subject><ispartof>Plasma sources science &amp; technology, 2022-09, Vol.31 (9), p.95002</ispartof><rights>2022 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c280t-f8ffa365cb91db401c6a9564034592ffd324da74c728dd2d5a4a69955ed823b63</citedby><cites>FETCH-LOGICAL-c280t-f8ffa365cb91db401c6a9564034592ffd324da74c728dd2d5a4a69955ed823b63</cites><orcidid>0000-0002-4591-1639 ; 0000-0003-2882-8996 ; 0000-0001-5416-7437 ; 0000-0001-9370-8160</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Halpern, Jacob M</creatorcontrib><creatorcontrib>Darr, Adam M</creatorcontrib><creatorcontrib>Harsha, N R Sree</creatorcontrib><creatorcontrib>Garner, Allen L</creatorcontrib><title>A coordinate system invariant formulation for space-charge limited current with nonzero injection velocity</title><title>Plasma sources science &amp; technology</title><addtitle>PSST</addtitle><addtitle>Plasma Sources Sci. Technol</addtitle><description>Recent studies have extended the classical space-charge limited current (SCLC) solution in a non-magnetic, planar diode with zero injection velocity to other geometries using variational calculus (VC). We further extend VC to solve for SCLC with a non-relativistic, monoenergetic injection velocity from first principles for nonplanar diodes. By extremizing either the current or a functional of the electric field (and not its derivative), we demonstrate that VC can find either the bifurcation or the SCLC solution, respectively. The bifurcation solution is characterized by the onset of particle reflection, resulting in a singularity in the derivative of the electric field at the virtual cathode, physically analogous to the singularity at the cathode in SCLC for zero injection velocity. Alternatively, using VC to extremize a functional of the potential and its gradient (electric field) yields the maximum current SCLC result. We then derive the SCLC solutions in cylindrical and spherical diodes; additionally, we develop a method to determine SCLC numerically and the bifurcation solution exactly for any orthogonal geometry. Implications for the potential profile and virtual cathode are discussed, especially the behavior for other geometries.</description><subject>electron beams</subject><subject>electron emission</subject><subject>space-charge limited current</subject><subject>variational calculus</subject><issn>0963-0252</issn><issn>1361-6595</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOwzAQRS0EEqWwZ-kPINR2YtdeVhUvqRIbWEdTP6ijJK5styh8PQlF7FjNaHTP1eggdEvJPSVSLmgpaCG44gvQUoE6Q7O_0zmaESXKgjDOLtFVSg0hlEq2nKFmhXUI0fgessVpSNl22PdHiB76jF2I3aGF7EM_7TjtQdtC7yB-WNz6zmdrsD7EaMfwp8873If-y8YwdjRW_3BH2wbt83CNLhy0yd78zjl6f3x4Wz8Xm9enl_VqU2gmSS6cdA5KwfVWUbOtCNUCFBcVKSuumHOmZJWBZaWXTBrDDIcKhFKcWyNZuRXlHJFTr44hpWhdvY--gzjUlNSTq3oSU09i6pOrEbk7IT7s6yYcYj8--H_8Gxx9bdg</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Halpern, Jacob M</creator><creator>Darr, Adam M</creator><creator>Harsha, N R Sree</creator><creator>Garner, Allen L</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4591-1639</orcidid><orcidid>https://orcid.org/0000-0003-2882-8996</orcidid><orcidid>https://orcid.org/0000-0001-5416-7437</orcidid><orcidid>https://orcid.org/0000-0001-9370-8160</orcidid></search><sort><creationdate>20220901</creationdate><title>A coordinate system invariant formulation for space-charge limited current with nonzero injection velocity</title><author>Halpern, Jacob M ; Darr, Adam M ; Harsha, N R Sree ; Garner, Allen L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c280t-f8ffa365cb91db401c6a9564034592ffd324da74c728dd2d5a4a69955ed823b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>electron beams</topic><topic>electron emission</topic><topic>space-charge limited current</topic><topic>variational calculus</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Halpern, Jacob M</creatorcontrib><creatorcontrib>Darr, Adam M</creatorcontrib><creatorcontrib>Harsha, N R Sree</creatorcontrib><creatorcontrib>Garner, Allen L</creatorcontrib><collection>CrossRef</collection><jtitle>Plasma sources science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Halpern, Jacob M</au><au>Darr, Adam M</au><au>Harsha, N R Sree</au><au>Garner, Allen L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A coordinate system invariant formulation for space-charge limited current with nonzero injection velocity</atitle><jtitle>Plasma sources science &amp; technology</jtitle><stitle>PSST</stitle><addtitle>Plasma Sources Sci. Technol</addtitle><date>2022-09-01</date><risdate>2022</risdate><volume>31</volume><issue>9</issue><spage>95002</spage><pages>95002-</pages><issn>0963-0252</issn><eissn>1361-6595</eissn><coden>PSTEEU</coden><abstract>Recent studies have extended the classical space-charge limited current (SCLC) solution in a non-magnetic, planar diode with zero injection velocity to other geometries using variational calculus (VC). We further extend VC to solve for SCLC with a non-relativistic, monoenergetic injection velocity from first principles for nonplanar diodes. By extremizing either the current or a functional of the electric field (and not its derivative), we demonstrate that VC can find either the bifurcation or the SCLC solution, respectively. The bifurcation solution is characterized by the onset of particle reflection, resulting in a singularity in the derivative of the electric field at the virtual cathode, physically analogous to the singularity at the cathode in SCLC for zero injection velocity. Alternatively, using VC to extremize a functional of the potential and its gradient (electric field) yields the maximum current SCLC result. We then derive the SCLC solutions in cylindrical and spherical diodes; additionally, we develop a method to determine SCLC numerically and the bifurcation solution exactly for any orthogonal geometry. Implications for the potential profile and virtual cathode are discussed, especially the behavior for other geometries.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6595/ac89a9</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4591-1639</orcidid><orcidid>https://orcid.org/0000-0003-2882-8996</orcidid><orcidid>https://orcid.org/0000-0001-5416-7437</orcidid><orcidid>https://orcid.org/0000-0001-9370-8160</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0963-0252
ispartof Plasma sources science & technology, 2022-09, Vol.31 (9), p.95002
issn 0963-0252
1361-6595
language eng
recordid cdi_iop_journals_10_1088_1361_6595_ac89a9
source Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)
subjects electron beams
electron emission
space-charge limited current
variational calculus
title A coordinate system invariant formulation for space-charge limited current with nonzero injection velocity
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T09%3A37%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20coordinate%20system%20invariant%20formulation%20for%20space-charge%20limited%20current%20with%20nonzero%20injection%20velocity&rft.jtitle=Plasma%20sources%20science%20&%20technology&rft.au=Halpern,%20Jacob%20M&rft.date=2022-09-01&rft.volume=31&rft.issue=9&rft.spage=95002&rft.pages=95002-&rft.issn=0963-0252&rft.eissn=1361-6595&rft.coden=PSTEEU&rft_id=info:doi/10.1088/1361-6595/ac89a9&rft_dat=%3Ciop_cross%3Epsstac89a9%3C/iop_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c280t-f8ffa365cb91db401c6a9564034592ffd324da74c728dd2d5a4a69955ed823b63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true