Loading…
Correlated materials design: prospects and challenges
The design of correlated materials challenges researchers to combine the maturing, high throughput framework of DFT-based materials design with the rapidly-developing first-principles theory for correlated electron systems. We review the field of correlated materials, distinguishing two broad classe...
Saved in:
Published in: | Reports on progress in physics 2019-01, Vol.82 (1), p.012504-012504 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The design of correlated materials challenges researchers to combine the maturing, high throughput framework of DFT-based materials design with the rapidly-developing first-principles theory for correlated electron systems. We review the field of correlated materials, distinguishing two broad classes of correlation effects, static and dynamics, and describe methodologies to take them into account. We introduce a material design workflow, and illustrate it via examples in several materials classes, including superconductors, charge ordering materials and systems near an electronically driven metal to insulator transition, highlighting the interplay between theory and experiment with a view towards finding new materials. We review the statistical formulation of the errors of currently available methods to estimate formation energies. We formulate an approach for estimating a lower-bound for the probability of a new compound to form. Correlation effects have to be considered in all the material design steps. These include bridging between structure and property, obtaining the correct structure and predicting material stability. We introduce a post-processing strategy to take them into account. |
---|---|
ISSN: | 0034-4885 1361-6633 |
DOI: | 10.1088/1361-6633/aadca4 |