Loading…

First principles prediction of structural, mechanical and thermodynamic stability in new 18-valence electron XVZ (X = Fe, Ni, Z = Ga, As) half-Heusler semiconductors

A suitable semiconductor adds a significant advantage to the technology industry, and the need for better, available, and tunable materials is insatiable. Of the various materials in use as semiconductor devices, the half-Heusler alloys have proved to be promising premised on the possibilities of tu...

Full description

Saved in:
Bibliographic Details
Published in:Semiconductor science and technology 2020-10, Vol.35 (10), p.105005
Main Authors: Osafile, O E, Azi, J O
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c280t-9eeda5ef44cacaf53e337f4154218a702c7b04e92f4e9dbe5b4d24fd29950d263
cites cdi_FETCH-LOGICAL-c280t-9eeda5ef44cacaf53e337f4154218a702c7b04e92f4e9dbe5b4d24fd29950d263
container_end_page
container_issue 10
container_start_page 105005
container_title Semiconductor science and technology
container_volume 35
creator Osafile, O E
Azi, J O
description A suitable semiconductor adds a significant advantage to the technology industry, and the need for better, available, and tunable materials is insatiable. Of the various materials in use as semiconductor devices, the half-Heusler alloys have proved to be promising premised on the possibilities of tuning the various properties to meet the desired demand. In this work, we have investigated the structural, electronic, elastic, mechanical, thermodynamic, and phonon properties of FeVAs and NiVGa half-Heusler alloys. The alloys have 18-valence electrons, and they obey the Slater-Pauling rule. They both belong to the C1b face-centered cubic crystal structure and exhibit indirect bandgap. The negative formation energy shows that experimental fabrication can be attempted; it also confirms the stability of the structures. The elastic properties obey the stability criteria set by Born and Huang and are, therefore, stable. We analyzed the mechanical strength of the alloys, and FeVAs proves to be a superhard material with a Vickers hardness of 78.8 while NiVGa alloy is not. The Debye temperature promotes FeVAs alloy over NiVGa alloy in terms of thermal conductivity. From investigations on the phonon properties using a 4×4×4 supercell to facilitate convergence, there are no negative frequencies; hence, we submit that both alloys are dynamically stable.
doi_str_mv 10.1088/1361-6641/aba289
format article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_iop_journals_10_1088_1361_6641_aba289</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>sstaba289</sourcerecordid><originalsourceid>FETCH-LOGICAL-c280t-9eeda5ef44cacaf53e337f4154218a702c7b04e92f4e9dbe5b4d24fd29950d263</originalsourceid><addsrcrecordid>eNp1kEFrGzEQhUVJIU7ae45zbGG3kbTa9e4hB2PqpGDaS1JCLsusNMIystZI6wb_oP7Pyjj0lsvMMLz3ZvgYuxH8m-BteyuqRpRNo8QtDijb7gOb_V9dsBmXTVsKqeQlu0ppy7kQbcVn7O_KxTTBPrqg3d5TyiMZpyc3BhgtpCke9HSI6AvYkd5gcBo9YDAwbSjuRnMMuHM6C3Fw3k1HcAECvYJoyz_oKWgC8qSnmAOff7_Al2e4gxUV8NMV8JLneyxgkb7CBr0tH-iQPEVIlEPHYPLxMaZP7KNFn-jzW79mT6vvj8uHcv3r_sdysS61bPlUdkQGa7JKadRo64qqam6VqJUULc651POBK-qkzcUMVA_KSGWN7LqaG9lU14yfc3UcU4pk-wxmh_HYC96fMPcnpv2JaX_GnC3F2eLGfb8dDzHkB9-X_wNs7n_4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>First principles prediction of structural, mechanical and thermodynamic stability in new 18-valence electron XVZ (X = Fe, Ni, Z = Ga, As) half-Heusler semiconductors</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Osafile, O E ; Azi, J O</creator><creatorcontrib>Osafile, O E ; Azi, J O</creatorcontrib><description>A suitable semiconductor adds a significant advantage to the technology industry, and the need for better, available, and tunable materials is insatiable. Of the various materials in use as semiconductor devices, the half-Heusler alloys have proved to be promising premised on the possibilities of tuning the various properties to meet the desired demand. In this work, we have investigated the structural, electronic, elastic, mechanical, thermodynamic, and phonon properties of FeVAs and NiVGa half-Heusler alloys. The alloys have 18-valence electrons, and they obey the Slater-Pauling rule. They both belong to the C1b face-centered cubic crystal structure and exhibit indirect bandgap. The negative formation energy shows that experimental fabrication can be attempted; it also confirms the stability of the structures. The elastic properties obey the stability criteria set by Born and Huang and are, therefore, stable. We analyzed the mechanical strength of the alloys, and FeVAs proves to be a superhard material with a Vickers hardness of 78.8 while NiVGa alloy is not. The Debye temperature promotes FeVAs alloy over NiVGa alloy in terms of thermal conductivity. From investigations on the phonon properties using a 4×4×4 supercell to facilitate convergence, there are no negative frequencies; hence, we submit that both alloys are dynamically stable.</description><identifier>ISSN: 0268-1242</identifier><identifier>EISSN: 1361-6641</identifier><identifier>DOI: 10.1088/1361-6641/aba289</identifier><identifier>CODEN: SSTEET</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>density functional perturbation theory ; density functional theory ; half-Heusler semiconductor ; lattice dynamics ; phonon properties ; thermodynamic properties</subject><ispartof>Semiconductor science and technology, 2020-10, Vol.35 (10), p.105005</ispartof><rights>2020 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c280t-9eeda5ef44cacaf53e337f4154218a702c7b04e92f4e9dbe5b4d24fd29950d263</citedby><cites>FETCH-LOGICAL-c280t-9eeda5ef44cacaf53e337f4154218a702c7b04e92f4e9dbe5b4d24fd29950d263</cites><orcidid>0000-0001-5154-7610</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Osafile, O E</creatorcontrib><creatorcontrib>Azi, J O</creatorcontrib><title>First principles prediction of structural, mechanical and thermodynamic stability in new 18-valence electron XVZ (X = Fe, Ni, Z = Ga, As) half-Heusler semiconductors</title><title>Semiconductor science and technology</title><addtitle>SST</addtitle><addtitle>Semicond. Sci. Technol</addtitle><description>A suitable semiconductor adds a significant advantage to the technology industry, and the need for better, available, and tunable materials is insatiable. Of the various materials in use as semiconductor devices, the half-Heusler alloys have proved to be promising premised on the possibilities of tuning the various properties to meet the desired demand. In this work, we have investigated the structural, electronic, elastic, mechanical, thermodynamic, and phonon properties of FeVAs and NiVGa half-Heusler alloys. The alloys have 18-valence electrons, and they obey the Slater-Pauling rule. They both belong to the C1b face-centered cubic crystal structure and exhibit indirect bandgap. The negative formation energy shows that experimental fabrication can be attempted; it also confirms the stability of the structures. The elastic properties obey the stability criteria set by Born and Huang and are, therefore, stable. We analyzed the mechanical strength of the alloys, and FeVAs proves to be a superhard material with a Vickers hardness of 78.8 while NiVGa alloy is not. The Debye temperature promotes FeVAs alloy over NiVGa alloy in terms of thermal conductivity. From investigations on the phonon properties using a 4×4×4 supercell to facilitate convergence, there are no negative frequencies; hence, we submit that both alloys are dynamically stable.</description><subject>density functional perturbation theory</subject><subject>density functional theory</subject><subject>half-Heusler semiconductor</subject><subject>lattice dynamics</subject><subject>phonon properties</subject><subject>thermodynamic properties</subject><issn>0268-1242</issn><issn>1361-6641</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kEFrGzEQhUVJIU7ae45zbGG3kbTa9e4hB2PqpGDaS1JCLsusNMIystZI6wb_oP7Pyjj0lsvMMLz3ZvgYuxH8m-BteyuqRpRNo8QtDijb7gOb_V9dsBmXTVsKqeQlu0ppy7kQbcVn7O_KxTTBPrqg3d5TyiMZpyc3BhgtpCke9HSI6AvYkd5gcBo9YDAwbSjuRnMMuHM6C3Fw3k1HcAECvYJoyz_oKWgC8qSnmAOff7_Al2e4gxUV8NMV8JLneyxgkb7CBr0tH-iQPEVIlEPHYPLxMaZP7KNFn-jzW79mT6vvj8uHcv3r_sdysS61bPlUdkQGa7JKadRo64qqam6VqJUULc651POBK-qkzcUMVA_KSGWN7LqaG9lU14yfc3UcU4pk-wxmh_HYC96fMPcnpv2JaX_GnC3F2eLGfb8dDzHkB9-X_wNs7n_4</recordid><startdate>202010</startdate><enddate>202010</enddate><creator>Osafile, O E</creator><creator>Azi, J O</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5154-7610</orcidid></search><sort><creationdate>202010</creationdate><title>First principles prediction of structural, mechanical and thermodynamic stability in new 18-valence electron XVZ (X = Fe, Ni, Z = Ga, As) half-Heusler semiconductors</title><author>Osafile, O E ; Azi, J O</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c280t-9eeda5ef44cacaf53e337f4154218a702c7b04e92f4e9dbe5b4d24fd29950d263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>density functional perturbation theory</topic><topic>density functional theory</topic><topic>half-Heusler semiconductor</topic><topic>lattice dynamics</topic><topic>phonon properties</topic><topic>thermodynamic properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Osafile, O E</creatorcontrib><creatorcontrib>Azi, J O</creatorcontrib><collection>CrossRef</collection><jtitle>Semiconductor science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Osafile, O E</au><au>Azi, J O</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>First principles prediction of structural, mechanical and thermodynamic stability in new 18-valence electron XVZ (X = Fe, Ni, Z = Ga, As) half-Heusler semiconductors</atitle><jtitle>Semiconductor science and technology</jtitle><stitle>SST</stitle><addtitle>Semicond. Sci. Technol</addtitle><date>2020-10</date><risdate>2020</risdate><volume>35</volume><issue>10</issue><spage>105005</spage><pages>105005-</pages><issn>0268-1242</issn><eissn>1361-6641</eissn><coden>SSTEET</coden><abstract>A suitable semiconductor adds a significant advantage to the technology industry, and the need for better, available, and tunable materials is insatiable. Of the various materials in use as semiconductor devices, the half-Heusler alloys have proved to be promising premised on the possibilities of tuning the various properties to meet the desired demand. In this work, we have investigated the structural, electronic, elastic, mechanical, thermodynamic, and phonon properties of FeVAs and NiVGa half-Heusler alloys. The alloys have 18-valence electrons, and they obey the Slater-Pauling rule. They both belong to the C1b face-centered cubic crystal structure and exhibit indirect bandgap. The negative formation energy shows that experimental fabrication can be attempted; it also confirms the stability of the structures. The elastic properties obey the stability criteria set by Born and Huang and are, therefore, stable. We analyzed the mechanical strength of the alloys, and FeVAs proves to be a superhard material with a Vickers hardness of 78.8 while NiVGa alloy is not. The Debye temperature promotes FeVAs alloy over NiVGa alloy in terms of thermal conductivity. From investigations on the phonon properties using a 4×4×4 supercell to facilitate convergence, there are no negative frequencies; hence, we submit that both alloys are dynamically stable.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6641/aba289</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5154-7610</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0268-1242
ispartof Semiconductor science and technology, 2020-10, Vol.35 (10), p.105005
issn 0268-1242
1361-6641
language eng
recordid cdi_iop_journals_10_1088_1361_6641_aba289
source Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)
subjects density functional perturbation theory
density functional theory
half-Heusler semiconductor
lattice dynamics
phonon properties
thermodynamic properties
title First principles prediction of structural, mechanical and thermodynamic stability in new 18-valence electron XVZ (X = Fe, Ni, Z = Ga, As) half-Heusler semiconductors
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T06%3A51%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=First%20principles%20prediction%20of%20structural,%20mechanical%20and%20thermodynamic%20stability%20in%20new%2018-valence%20electron%20XVZ%20(X%20=%20Fe,%20Ni,%20Z%20=%20Ga,%20As)%20half-Heusler%20semiconductors&rft.jtitle=Semiconductor%20science%20and%20technology&rft.au=Osafile,%20O%20E&rft.date=2020-10&rft.volume=35&rft.issue=10&rft.spage=105005&rft.pages=105005-&rft.issn=0268-1242&rft.eissn=1361-6641&rft.coden=SSTEET&rft_id=info:doi/10.1088/1361-6641/aba289&rft_dat=%3Ciop_cross%3Esstaba289%3C/iop_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c280t-9eeda5ef44cacaf53e337f4154218a702c7b04e92f4e9dbe5b4d24fd29950d263%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true