Loading…

Robust fluid-structure interaction analysis of an adaptive airfoil using shape memory alloy actuators

In the present paper, an aero-structure interaction model for the rapid simulation of morphing structures realized through shape memory alloy (SMA) actuators is presented. The aerodynamic simulation method implements a potential flow method strongly coupled with an integral boundary layer method in...

Full description

Saved in:
Bibliographic Details
Published in:Smart materials and structures 2018-10, Vol.27 (10), p.105035
Main Authors: Machairas, Theodoros, Kontogiannis, Alexandros, Karakalas, Anargyros, Solomou, Alexandros, Riziotis, Vasilis, Saravanos, Dimitris
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c313t-29c8cb11bc7b22d043c0d4aa355716335f2fbf901964371c6ecb0b867d624c5a3
cites cdi_FETCH-LOGICAL-c313t-29c8cb11bc7b22d043c0d4aa355716335f2fbf901964371c6ecb0b867d624c5a3
container_end_page
container_issue 10
container_start_page 105035
container_title Smart materials and structures
container_volume 27
creator Machairas, Theodoros
Kontogiannis, Alexandros
Karakalas, Anargyros
Solomou, Alexandros
Riziotis, Vasilis
Saravanos, Dimitris
description In the present paper, an aero-structure interaction model for the rapid simulation of morphing structures realized through shape memory alloy (SMA) actuators is presented. The aerodynamic simulation method implements a potential flow method strongly coupled with an integral boundary layer method in the context of a viscous-inviscid interaction approach, which includes a transition prediction model and a simplified shear stress-transport equation for the turbulence closure. The structural analysis model of the airfoil integrates a well-established SMA constitutive model for the prediction of the actuator behavior into finite element software. The two numerical models are loosely interconnected by exchanging geometrical and loading data at each iteration. An articulated 2-link adaptive mechanism for load alleviation purposes in horizontal axis wind turbine blades is investigated considering two different morphing scenarios: (1) operation of a single hinged flap; (2) combined movement of two sequential airfoil segments is attempted to achieve a smoother camber variation. The present fluid-structure interaction (FSI) model is employed with the aim to quantify its effect and benefits on the active shape control of the morphing airfoil, the actuator response, and the aerodynamic performance including lift and drag coefficients. The presented results demonstrate the robustness and numerical performance of the developed FSI method.
doi_str_mv 10.1088/1361-665X/aad649
format article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_iop_journals_10_1088_1361_665X_aad649</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>smsaad649</sourcerecordid><originalsourceid>FETCH-LOGICAL-c313t-29c8cb11bc7b22d043c0d4aa355716335f2fbf901964371c6ecb0b867d624c5a3</originalsourceid><addsrcrecordid>eNp1kM1LxDAQxYMouK7ePebowbpJ06btURa_YEEQBW9hmiaapW1KJhX2v7el4kkvM8Pw3oP3I-SSsxvOynLDheSJlPn7BqCRWXVEVr-vY7JilcwSXqTylJwh7hnjvBR8RcyLr0eM1LajaxKMYdRxDIa6PpoAOjrfU-ihPaBD6u10U2hgiO7LUHDBetfSEV3_QfETBkM70_lwoNC2fppTFkQf8JycWGjRXPzsNXm7v3vdPia754en7e0u0YKLmKSVLnXNea2LOk0blgnNmgxA5HnBpRC5TW1tK8anMqLgWhpds7qURSPTTOcg1oQtuTp4xGCsGoLrIBwUZ2rGpGYmamaiFkyT5WqxOD-ovR_DVBYVdqjSYnHlTORqaOwkvf5D-m_yNx87eVs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Robust fluid-structure interaction analysis of an adaptive airfoil using shape memory alloy actuators</title><source>Institute of Physics</source><creator>Machairas, Theodoros ; Kontogiannis, Alexandros ; Karakalas, Anargyros ; Solomou, Alexandros ; Riziotis, Vasilis ; Saravanos, Dimitris</creator><creatorcontrib>Machairas, Theodoros ; Kontogiannis, Alexandros ; Karakalas, Anargyros ; Solomou, Alexandros ; Riziotis, Vasilis ; Saravanos, Dimitris</creatorcontrib><description>In the present paper, an aero-structure interaction model for the rapid simulation of morphing structures realized through shape memory alloy (SMA) actuators is presented. The aerodynamic simulation method implements a potential flow method strongly coupled with an integral boundary layer method in the context of a viscous-inviscid interaction approach, which includes a transition prediction model and a simplified shear stress-transport equation for the turbulence closure. The structural analysis model of the airfoil integrates a well-established SMA constitutive model for the prediction of the actuator behavior into finite element software. The two numerical models are loosely interconnected by exchanging geometrical and loading data at each iteration. An articulated 2-link adaptive mechanism for load alleviation purposes in horizontal axis wind turbine blades is investigated considering two different morphing scenarios: (1) operation of a single hinged flap; (2) combined movement of two sequential airfoil segments is attempted to achieve a smoother camber variation. The present fluid-structure interaction (FSI) model is employed with the aim to quantify its effect and benefits on the active shape control of the morphing airfoil, the actuator response, and the aerodynamic performance including lift and drag coefficients. The presented results demonstrate the robustness and numerical performance of the developed FSI method.</description><identifier>ISSN: 0964-1726</identifier><identifier>EISSN: 1361-665X</identifier><identifier>DOI: 10.1088/1361-665X/aad649</identifier><identifier>CODEN: SMSTER</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>actuator ; airfoil ; fluid-structure interaction ; morphing ; shape memory alloy ; wind turbines</subject><ispartof>Smart materials and structures, 2018-10, Vol.27 (10), p.105035</ispartof><rights>2018 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c313t-29c8cb11bc7b22d043c0d4aa355716335f2fbf901964371c6ecb0b867d624c5a3</citedby><cites>FETCH-LOGICAL-c313t-29c8cb11bc7b22d043c0d4aa355716335f2fbf901964371c6ecb0b867d624c5a3</cites><orcidid>0000-0001-9224-2047</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Machairas, Theodoros</creatorcontrib><creatorcontrib>Kontogiannis, Alexandros</creatorcontrib><creatorcontrib>Karakalas, Anargyros</creatorcontrib><creatorcontrib>Solomou, Alexandros</creatorcontrib><creatorcontrib>Riziotis, Vasilis</creatorcontrib><creatorcontrib>Saravanos, Dimitris</creatorcontrib><title>Robust fluid-structure interaction analysis of an adaptive airfoil using shape memory alloy actuators</title><title>Smart materials and structures</title><addtitle>SMS</addtitle><addtitle>Smart Mater. Struct</addtitle><description>In the present paper, an aero-structure interaction model for the rapid simulation of morphing structures realized through shape memory alloy (SMA) actuators is presented. The aerodynamic simulation method implements a potential flow method strongly coupled with an integral boundary layer method in the context of a viscous-inviscid interaction approach, which includes a transition prediction model and a simplified shear stress-transport equation for the turbulence closure. The structural analysis model of the airfoil integrates a well-established SMA constitutive model for the prediction of the actuator behavior into finite element software. The two numerical models are loosely interconnected by exchanging geometrical and loading data at each iteration. An articulated 2-link adaptive mechanism for load alleviation purposes in horizontal axis wind turbine blades is investigated considering two different morphing scenarios: (1) operation of a single hinged flap; (2) combined movement of two sequential airfoil segments is attempted to achieve a smoother camber variation. The present fluid-structure interaction (FSI) model is employed with the aim to quantify its effect and benefits on the active shape control of the morphing airfoil, the actuator response, and the aerodynamic performance including lift and drag coefficients. The presented results demonstrate the robustness and numerical performance of the developed FSI method.</description><subject>actuator</subject><subject>airfoil</subject><subject>fluid-structure interaction</subject><subject>morphing</subject><subject>shape memory alloy</subject><subject>wind turbines</subject><issn>0964-1726</issn><issn>1361-665X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kM1LxDAQxYMouK7ePebowbpJ06btURa_YEEQBW9hmiaapW1KJhX2v7el4kkvM8Pw3oP3I-SSsxvOynLDheSJlPn7BqCRWXVEVr-vY7JilcwSXqTylJwh7hnjvBR8RcyLr0eM1LajaxKMYdRxDIa6PpoAOjrfU-ihPaBD6u10U2hgiO7LUHDBetfSEV3_QfETBkM70_lwoNC2fppTFkQf8JycWGjRXPzsNXm7v3vdPia754en7e0u0YKLmKSVLnXNea2LOk0blgnNmgxA5HnBpRC5TW1tK8anMqLgWhpds7qURSPTTOcg1oQtuTp4xGCsGoLrIBwUZ2rGpGYmamaiFkyT5WqxOD-ovR_DVBYVdqjSYnHlTORqaOwkvf5D-m_yNx87eVs</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Machairas, Theodoros</creator><creator>Kontogiannis, Alexandros</creator><creator>Karakalas, Anargyros</creator><creator>Solomou, Alexandros</creator><creator>Riziotis, Vasilis</creator><creator>Saravanos, Dimitris</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9224-2047</orcidid></search><sort><creationdate>20181001</creationdate><title>Robust fluid-structure interaction analysis of an adaptive airfoil using shape memory alloy actuators</title><author>Machairas, Theodoros ; Kontogiannis, Alexandros ; Karakalas, Anargyros ; Solomou, Alexandros ; Riziotis, Vasilis ; Saravanos, Dimitris</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c313t-29c8cb11bc7b22d043c0d4aa355716335f2fbf901964371c6ecb0b867d624c5a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>actuator</topic><topic>airfoil</topic><topic>fluid-structure interaction</topic><topic>morphing</topic><topic>shape memory alloy</topic><topic>wind turbines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Machairas, Theodoros</creatorcontrib><creatorcontrib>Kontogiannis, Alexandros</creatorcontrib><creatorcontrib>Karakalas, Anargyros</creatorcontrib><creatorcontrib>Solomou, Alexandros</creatorcontrib><creatorcontrib>Riziotis, Vasilis</creatorcontrib><creatorcontrib>Saravanos, Dimitris</creatorcontrib><collection>CrossRef</collection><jtitle>Smart materials and structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Machairas, Theodoros</au><au>Kontogiannis, Alexandros</au><au>Karakalas, Anargyros</au><au>Solomou, Alexandros</au><au>Riziotis, Vasilis</au><au>Saravanos, Dimitris</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust fluid-structure interaction analysis of an adaptive airfoil using shape memory alloy actuators</atitle><jtitle>Smart materials and structures</jtitle><stitle>SMS</stitle><addtitle>Smart Mater. Struct</addtitle><date>2018-10-01</date><risdate>2018</risdate><volume>27</volume><issue>10</issue><spage>105035</spage><pages>105035-</pages><issn>0964-1726</issn><eissn>1361-665X</eissn><coden>SMSTER</coden><abstract>In the present paper, an aero-structure interaction model for the rapid simulation of morphing structures realized through shape memory alloy (SMA) actuators is presented. The aerodynamic simulation method implements a potential flow method strongly coupled with an integral boundary layer method in the context of a viscous-inviscid interaction approach, which includes a transition prediction model and a simplified shear stress-transport equation for the turbulence closure. The structural analysis model of the airfoil integrates a well-established SMA constitutive model for the prediction of the actuator behavior into finite element software. The two numerical models are loosely interconnected by exchanging geometrical and loading data at each iteration. An articulated 2-link adaptive mechanism for load alleviation purposes in horizontal axis wind turbine blades is investigated considering two different morphing scenarios: (1) operation of a single hinged flap; (2) combined movement of two sequential airfoil segments is attempted to achieve a smoother camber variation. The present fluid-structure interaction (FSI) model is employed with the aim to quantify its effect and benefits on the active shape control of the morphing airfoil, the actuator response, and the aerodynamic performance including lift and drag coefficients. The presented results demonstrate the robustness and numerical performance of the developed FSI method.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-665X/aad649</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-9224-2047</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0964-1726
ispartof Smart materials and structures, 2018-10, Vol.27 (10), p.105035
issn 0964-1726
1361-665X
language eng
recordid cdi_iop_journals_10_1088_1361_665X_aad649
source Institute of Physics
subjects actuator
airfoil
fluid-structure interaction
morphing
shape memory alloy
wind turbines
title Robust fluid-structure interaction analysis of an adaptive airfoil using shape memory alloy actuators
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T21%3A05%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20fluid-structure%20interaction%20analysis%20of%20an%20adaptive%20airfoil%20using%20shape%20memory%20alloy%20actuators&rft.jtitle=Smart%20materials%20and%20structures&rft.au=Machairas,%20Theodoros&rft.date=2018-10-01&rft.volume=27&rft.issue=10&rft.spage=105035&rft.pages=105035-&rft.issn=0964-1726&rft.eissn=1361-665X&rft.coden=SMSTER&rft_id=info:doi/10.1088/1361-665X/aad649&rft_dat=%3Ciop_cross%3Esmsaad649%3C/iop_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c313t-29c8cb11bc7b22d043c0d4aa355716335f2fbf901964371c6ecb0b867d624c5a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true