Loading…
Robust fluid-structure interaction analysis of an adaptive airfoil using shape memory alloy actuators
In the present paper, an aero-structure interaction model for the rapid simulation of morphing structures realized through shape memory alloy (SMA) actuators is presented. The aerodynamic simulation method implements a potential flow method strongly coupled with an integral boundary layer method in...
Saved in:
Published in: | Smart materials and structures 2018-10, Vol.27 (10), p.105035 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c313t-29c8cb11bc7b22d043c0d4aa355716335f2fbf901964371c6ecb0b867d624c5a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c313t-29c8cb11bc7b22d043c0d4aa355716335f2fbf901964371c6ecb0b867d624c5a3 |
container_end_page | |
container_issue | 10 |
container_start_page | 105035 |
container_title | Smart materials and structures |
container_volume | 27 |
creator | Machairas, Theodoros Kontogiannis, Alexandros Karakalas, Anargyros Solomou, Alexandros Riziotis, Vasilis Saravanos, Dimitris |
description | In the present paper, an aero-structure interaction model for the rapid simulation of morphing structures realized through shape memory alloy (SMA) actuators is presented. The aerodynamic simulation method implements a potential flow method strongly coupled with an integral boundary layer method in the context of a viscous-inviscid interaction approach, which includes a transition prediction model and a simplified shear stress-transport equation for the turbulence closure. The structural analysis model of the airfoil integrates a well-established SMA constitutive model for the prediction of the actuator behavior into finite element software. The two numerical models are loosely interconnected by exchanging geometrical and loading data at each iteration. An articulated 2-link adaptive mechanism for load alleviation purposes in horizontal axis wind turbine blades is investigated considering two different morphing scenarios: (1) operation of a single hinged flap; (2) combined movement of two sequential airfoil segments is attempted to achieve a smoother camber variation. The present fluid-structure interaction (FSI) model is employed with the aim to quantify its effect and benefits on the active shape control of the morphing airfoil, the actuator response, and the aerodynamic performance including lift and drag coefficients. The presented results demonstrate the robustness and numerical performance of the developed FSI method. |
doi_str_mv | 10.1088/1361-665X/aad649 |
format | article |
fullrecord | <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_iop_journals_10_1088_1361_665X_aad649</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>smsaad649</sourcerecordid><originalsourceid>FETCH-LOGICAL-c313t-29c8cb11bc7b22d043c0d4aa355716335f2fbf901964371c6ecb0b867d624c5a3</originalsourceid><addsrcrecordid>eNp1kM1LxDAQxYMouK7ePebowbpJ06btURa_YEEQBW9hmiaapW1KJhX2v7el4kkvM8Pw3oP3I-SSsxvOynLDheSJlPn7BqCRWXVEVr-vY7JilcwSXqTylJwh7hnjvBR8RcyLr0eM1LajaxKMYdRxDIa6PpoAOjrfU-ihPaBD6u10U2hgiO7LUHDBetfSEV3_QfETBkM70_lwoNC2fppTFkQf8JycWGjRXPzsNXm7v3vdPia754en7e0u0YKLmKSVLnXNea2LOk0blgnNmgxA5HnBpRC5TW1tK8anMqLgWhpds7qURSPTTOcg1oQtuTp4xGCsGoLrIBwUZ2rGpGYmamaiFkyT5WqxOD-ovR_DVBYVdqjSYnHlTORqaOwkvf5D-m_yNx87eVs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Robust fluid-structure interaction analysis of an adaptive airfoil using shape memory alloy actuators</title><source>Institute of Physics</source><creator>Machairas, Theodoros ; Kontogiannis, Alexandros ; Karakalas, Anargyros ; Solomou, Alexandros ; Riziotis, Vasilis ; Saravanos, Dimitris</creator><creatorcontrib>Machairas, Theodoros ; Kontogiannis, Alexandros ; Karakalas, Anargyros ; Solomou, Alexandros ; Riziotis, Vasilis ; Saravanos, Dimitris</creatorcontrib><description>In the present paper, an aero-structure interaction model for the rapid simulation of morphing structures realized through shape memory alloy (SMA) actuators is presented. The aerodynamic simulation method implements a potential flow method strongly coupled with an integral boundary layer method in the context of a viscous-inviscid interaction approach, which includes a transition prediction model and a simplified shear stress-transport equation for the turbulence closure. The structural analysis model of the airfoil integrates a well-established SMA constitutive model for the prediction of the actuator behavior into finite element software. The two numerical models are loosely interconnected by exchanging geometrical and loading data at each iteration. An articulated 2-link adaptive mechanism for load alleviation purposes in horizontal axis wind turbine blades is investigated considering two different morphing scenarios: (1) operation of a single hinged flap; (2) combined movement of two sequential airfoil segments is attempted to achieve a smoother camber variation. The present fluid-structure interaction (FSI) model is employed with the aim to quantify its effect and benefits on the active shape control of the morphing airfoil, the actuator response, and the aerodynamic performance including lift and drag coefficients. The presented results demonstrate the robustness and numerical performance of the developed FSI method.</description><identifier>ISSN: 0964-1726</identifier><identifier>EISSN: 1361-665X</identifier><identifier>DOI: 10.1088/1361-665X/aad649</identifier><identifier>CODEN: SMSTER</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>actuator ; airfoil ; fluid-structure interaction ; morphing ; shape memory alloy ; wind turbines</subject><ispartof>Smart materials and structures, 2018-10, Vol.27 (10), p.105035</ispartof><rights>2018 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c313t-29c8cb11bc7b22d043c0d4aa355716335f2fbf901964371c6ecb0b867d624c5a3</citedby><cites>FETCH-LOGICAL-c313t-29c8cb11bc7b22d043c0d4aa355716335f2fbf901964371c6ecb0b867d624c5a3</cites><orcidid>0000-0001-9224-2047</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Machairas, Theodoros</creatorcontrib><creatorcontrib>Kontogiannis, Alexandros</creatorcontrib><creatorcontrib>Karakalas, Anargyros</creatorcontrib><creatorcontrib>Solomou, Alexandros</creatorcontrib><creatorcontrib>Riziotis, Vasilis</creatorcontrib><creatorcontrib>Saravanos, Dimitris</creatorcontrib><title>Robust fluid-structure interaction analysis of an adaptive airfoil using shape memory alloy actuators</title><title>Smart materials and structures</title><addtitle>SMS</addtitle><addtitle>Smart Mater. Struct</addtitle><description>In the present paper, an aero-structure interaction model for the rapid simulation of morphing structures realized through shape memory alloy (SMA) actuators is presented. The aerodynamic simulation method implements a potential flow method strongly coupled with an integral boundary layer method in the context of a viscous-inviscid interaction approach, which includes a transition prediction model and a simplified shear stress-transport equation for the turbulence closure. The structural analysis model of the airfoil integrates a well-established SMA constitutive model for the prediction of the actuator behavior into finite element software. The two numerical models are loosely interconnected by exchanging geometrical and loading data at each iteration. An articulated 2-link adaptive mechanism for load alleviation purposes in horizontal axis wind turbine blades is investigated considering two different morphing scenarios: (1) operation of a single hinged flap; (2) combined movement of two sequential airfoil segments is attempted to achieve a smoother camber variation. The present fluid-structure interaction (FSI) model is employed with the aim to quantify its effect and benefits on the active shape control of the morphing airfoil, the actuator response, and the aerodynamic performance including lift and drag coefficients. The presented results demonstrate the robustness and numerical performance of the developed FSI method.</description><subject>actuator</subject><subject>airfoil</subject><subject>fluid-structure interaction</subject><subject>morphing</subject><subject>shape memory alloy</subject><subject>wind turbines</subject><issn>0964-1726</issn><issn>1361-665X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kM1LxDAQxYMouK7ePebowbpJ06btURa_YEEQBW9hmiaapW1KJhX2v7el4kkvM8Pw3oP3I-SSsxvOynLDheSJlPn7BqCRWXVEVr-vY7JilcwSXqTylJwh7hnjvBR8RcyLr0eM1LajaxKMYdRxDIa6PpoAOjrfU-ihPaBD6u10U2hgiO7LUHDBetfSEV3_QfETBkM70_lwoNC2fppTFkQf8JycWGjRXPzsNXm7v3vdPia754en7e0u0YKLmKSVLnXNea2LOk0blgnNmgxA5HnBpRC5TW1tK8anMqLgWhpds7qURSPTTOcg1oQtuTp4xGCsGoLrIBwUZ2rGpGYmamaiFkyT5WqxOD-ovR_DVBYVdqjSYnHlTORqaOwkvf5D-m_yNx87eVs</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Machairas, Theodoros</creator><creator>Kontogiannis, Alexandros</creator><creator>Karakalas, Anargyros</creator><creator>Solomou, Alexandros</creator><creator>Riziotis, Vasilis</creator><creator>Saravanos, Dimitris</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9224-2047</orcidid></search><sort><creationdate>20181001</creationdate><title>Robust fluid-structure interaction analysis of an adaptive airfoil using shape memory alloy actuators</title><author>Machairas, Theodoros ; Kontogiannis, Alexandros ; Karakalas, Anargyros ; Solomou, Alexandros ; Riziotis, Vasilis ; Saravanos, Dimitris</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c313t-29c8cb11bc7b22d043c0d4aa355716335f2fbf901964371c6ecb0b867d624c5a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>actuator</topic><topic>airfoil</topic><topic>fluid-structure interaction</topic><topic>morphing</topic><topic>shape memory alloy</topic><topic>wind turbines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Machairas, Theodoros</creatorcontrib><creatorcontrib>Kontogiannis, Alexandros</creatorcontrib><creatorcontrib>Karakalas, Anargyros</creatorcontrib><creatorcontrib>Solomou, Alexandros</creatorcontrib><creatorcontrib>Riziotis, Vasilis</creatorcontrib><creatorcontrib>Saravanos, Dimitris</creatorcontrib><collection>CrossRef</collection><jtitle>Smart materials and structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Machairas, Theodoros</au><au>Kontogiannis, Alexandros</au><au>Karakalas, Anargyros</au><au>Solomou, Alexandros</au><au>Riziotis, Vasilis</au><au>Saravanos, Dimitris</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust fluid-structure interaction analysis of an adaptive airfoil using shape memory alloy actuators</atitle><jtitle>Smart materials and structures</jtitle><stitle>SMS</stitle><addtitle>Smart Mater. Struct</addtitle><date>2018-10-01</date><risdate>2018</risdate><volume>27</volume><issue>10</issue><spage>105035</spage><pages>105035-</pages><issn>0964-1726</issn><eissn>1361-665X</eissn><coden>SMSTER</coden><abstract>In the present paper, an aero-structure interaction model for the rapid simulation of morphing structures realized through shape memory alloy (SMA) actuators is presented. The aerodynamic simulation method implements a potential flow method strongly coupled with an integral boundary layer method in the context of a viscous-inviscid interaction approach, which includes a transition prediction model and a simplified shear stress-transport equation for the turbulence closure. The structural analysis model of the airfoil integrates a well-established SMA constitutive model for the prediction of the actuator behavior into finite element software. The two numerical models are loosely interconnected by exchanging geometrical and loading data at each iteration. An articulated 2-link adaptive mechanism for load alleviation purposes in horizontal axis wind turbine blades is investigated considering two different morphing scenarios: (1) operation of a single hinged flap; (2) combined movement of two sequential airfoil segments is attempted to achieve a smoother camber variation. The present fluid-structure interaction (FSI) model is employed with the aim to quantify its effect and benefits on the active shape control of the morphing airfoil, the actuator response, and the aerodynamic performance including lift and drag coefficients. The presented results demonstrate the robustness and numerical performance of the developed FSI method.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-665X/aad649</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-9224-2047</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0964-1726 |
ispartof | Smart materials and structures, 2018-10, Vol.27 (10), p.105035 |
issn | 0964-1726 1361-665X |
language | eng |
recordid | cdi_iop_journals_10_1088_1361_665X_aad649 |
source | Institute of Physics |
subjects | actuator airfoil fluid-structure interaction morphing shape memory alloy wind turbines |
title | Robust fluid-structure interaction analysis of an adaptive airfoil using shape memory alloy actuators |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T21%3A05%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20fluid-structure%20interaction%20analysis%20of%20an%20adaptive%20airfoil%20using%20shape%20memory%20alloy%20actuators&rft.jtitle=Smart%20materials%20and%20structures&rft.au=Machairas,%20Theodoros&rft.date=2018-10-01&rft.volume=27&rft.issue=10&rft.spage=105035&rft.pages=105035-&rft.issn=0964-1726&rft.eissn=1361-665X&rft.coden=SMSTER&rft_id=info:doi/10.1088/1361-665X/aad649&rft_dat=%3Ciop_cross%3Esmsaad649%3C/iop_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c313t-29c8cb11bc7b22d043c0d4aa355716335f2fbf901964371c6ecb0b867d624c5a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |