Loading…

A nanocryotron comparator can connect single-flux-quantum circuits to conventional electronics

Integration with conventional electronics offers a straightforward and economical approach to upgrading existing superconducting technologies, such as scaling up superconducting detectors into large arrays and combining single flux quantum (SFQ) digital circuits with semiconductor logic gates and me...

Full description

Saved in:
Bibliographic Details
Published in:Superconductor science & technology 2017-03, Vol.30 (4), p.44002
Main Authors: Zhao, Qing-Yuan, McCaughan, Adam N, Dane, Andrew E, Berggren, Karl K, Ortlepp, Thomas
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c379t-1fba38a8420c67e0ffa950cb2c14a27b4e7dd2b739c50ee15f3ae3ac997c9ef03
cites cdi_FETCH-LOGICAL-c379t-1fba38a8420c67e0ffa950cb2c14a27b4e7dd2b739c50ee15f3ae3ac997c9ef03
container_end_page
container_issue 4
container_start_page 44002
container_title Superconductor science & technology
container_volume 30
creator Zhao, Qing-Yuan
McCaughan, Adam N
Dane, Andrew E
Berggren, Karl K
Ortlepp, Thomas
description Integration with conventional electronics offers a straightforward and economical approach to upgrading existing superconducting technologies, such as scaling up superconducting detectors into large arrays and combining single flux quantum (SFQ) digital circuits with semiconductor logic gates and memories. However, direct output signals from superconducting devices (e.g., Josephson junctions) are usually not compatible with the input requirements of conventional devices (e.g., transistors). Here, we demonstrate the use of a single three-terminal superconducting-nanowire device, called the nanocryotron (nTron), as a digital comparator to combine SFQ circuits with mature semiconductor circuits such as complementary metal oxide semiconductor (CMOS) circuits. Since SFQ circuits can digitize output signals from general superconducting devices and CMOS circuits can interface existing CMOS-compatible electronics, our results demonstrate the feasibility of a general architecture that uses an nTron as an interface to realize a 'super-hybrid' system consisting of superconducting detectors, superconducting quantum electronics, CMOS logic gates and memories, and other conventional electronics.
doi_str_mv 10.1088/1361-6668/aa5f33
format article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_iop_journals_10_1088_1361_6668_aa5f33</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>sustaa5f33</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-1fba38a8420c67e0ffa950cb2c14a27b4e7dd2b739c50ee15f3ae3ac997c9ef03</originalsourceid><addsrcrecordid>eNp9kM1LAzEQxYMoWKt3j3v04NrJZj-PpWgVCl70apidJpKyTdYkK_a_d5eKJ_E0zPDeY96PsWsOdxzqesFFydOyLOsFYqGFOGGz39Mpm0FTiDSDvD5nFyHsADivRTZjb8vEonXkDy56ZxNy-x49RucTwmm1VlFMgrHvnUp1N3ylHwPaOOwTMp4GE0MS3aT7VDYaZ7FLVDdaxjBD4ZKdaeyCuvqZc_b6cP-yekw3z-un1XKTkqiamHLdoqixzjOgslKgNTYFUJsRzzGr2lxV223WVqKhApTiY0FUAqlpKmqUBjFncMwl70LwSsvemz36g-QgJz5ygiEnGPLIZ7TcHi3G9XLnBj--Hv6T3_whD0OIUoDMJeQ5QCb7rRbfnQh36Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A nanocryotron comparator can connect single-flux-quantum circuits to conventional electronics</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Zhao, Qing-Yuan ; McCaughan, Adam N ; Dane, Andrew E ; Berggren, Karl K ; Ortlepp, Thomas</creator><creatorcontrib>Zhao, Qing-Yuan ; McCaughan, Adam N ; Dane, Andrew E ; Berggren, Karl K ; Ortlepp, Thomas</creatorcontrib><description>Integration with conventional electronics offers a straightforward and economical approach to upgrading existing superconducting technologies, such as scaling up superconducting detectors into large arrays and combining single flux quantum (SFQ) digital circuits with semiconductor logic gates and memories. However, direct output signals from superconducting devices (e.g., Josephson junctions) are usually not compatible with the input requirements of conventional devices (e.g., transistors). Here, we demonstrate the use of a single three-terminal superconducting-nanowire device, called the nanocryotron (nTron), as a digital comparator to combine SFQ circuits with mature semiconductor circuits such as complementary metal oxide semiconductor (CMOS) circuits. Since SFQ circuits can digitize output signals from general superconducting devices and CMOS circuits can interface existing CMOS-compatible electronics, our results demonstrate the feasibility of a general architecture that uses an nTron as an interface to realize a 'super-hybrid' system consisting of superconducting detectors, superconducting quantum electronics, CMOS logic gates and memories, and other conventional electronics.</description><identifier>ISSN: 0953-2048</identifier><identifier>EISSN: 1361-6668</identifier><identifier>DOI: 10.1088/1361-6668/aa5f33</identifier><identifier>CODEN: SUSTEF</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>hybrid system ; single-flux quantum circuit ; superconducting nanowire nanocryotron</subject><ispartof>Superconductor science &amp; technology, 2017-03, Vol.30 (4), p.44002</ispartof><rights>2017 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-1fba38a8420c67e0ffa950cb2c14a27b4e7dd2b739c50ee15f3ae3ac997c9ef03</citedby><cites>FETCH-LOGICAL-c379t-1fba38a8420c67e0ffa950cb2c14a27b4e7dd2b739c50ee15f3ae3ac997c9ef03</cites><orcidid>0000-0001-7453-9031 ; 0000-0001-6929-4391 ; 0000-0002-8553-6474 ; 0000-0003-2480-767X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zhao, Qing-Yuan</creatorcontrib><creatorcontrib>McCaughan, Adam N</creatorcontrib><creatorcontrib>Dane, Andrew E</creatorcontrib><creatorcontrib>Berggren, Karl K</creatorcontrib><creatorcontrib>Ortlepp, Thomas</creatorcontrib><title>A nanocryotron comparator can connect single-flux-quantum circuits to conventional electronics</title><title>Superconductor science &amp; technology</title><addtitle>SUST</addtitle><addtitle>Supercond. Sci. Technol</addtitle><description>Integration with conventional electronics offers a straightforward and economical approach to upgrading existing superconducting technologies, such as scaling up superconducting detectors into large arrays and combining single flux quantum (SFQ) digital circuits with semiconductor logic gates and memories. However, direct output signals from superconducting devices (e.g., Josephson junctions) are usually not compatible with the input requirements of conventional devices (e.g., transistors). Here, we demonstrate the use of a single three-terminal superconducting-nanowire device, called the nanocryotron (nTron), as a digital comparator to combine SFQ circuits with mature semiconductor circuits such as complementary metal oxide semiconductor (CMOS) circuits. Since SFQ circuits can digitize output signals from general superconducting devices and CMOS circuits can interface existing CMOS-compatible electronics, our results demonstrate the feasibility of a general architecture that uses an nTron as an interface to realize a 'super-hybrid' system consisting of superconducting detectors, superconducting quantum electronics, CMOS logic gates and memories, and other conventional electronics.</description><subject>hybrid system</subject><subject>single-flux quantum circuit</subject><subject>superconducting nanowire nanocryotron</subject><issn>0953-2048</issn><issn>1361-6668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kM1LAzEQxYMoWKt3j3v04NrJZj-PpWgVCl70apidJpKyTdYkK_a_d5eKJ_E0zPDeY96PsWsOdxzqesFFydOyLOsFYqGFOGGz39Mpm0FTiDSDvD5nFyHsADivRTZjb8vEonXkDy56ZxNy-x49RucTwmm1VlFMgrHvnUp1N3ylHwPaOOwTMp4GE0MS3aT7VDYaZ7FLVDdaxjBD4ZKdaeyCuvqZc_b6cP-yekw3z-un1XKTkqiamHLdoqixzjOgslKgNTYFUJsRzzGr2lxV223WVqKhApTiY0FUAqlpKmqUBjFncMwl70LwSsvemz36g-QgJz5ygiEnGPLIZ7TcHi3G9XLnBj--Hv6T3_whD0OIUoDMJeQ5QCb7rRbfnQh36Q</recordid><startdate>20170308</startdate><enddate>20170308</enddate><creator>Zhao, Qing-Yuan</creator><creator>McCaughan, Adam N</creator><creator>Dane, Andrew E</creator><creator>Berggren, Karl K</creator><creator>Ortlepp, Thomas</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7453-9031</orcidid><orcidid>https://orcid.org/0000-0001-6929-4391</orcidid><orcidid>https://orcid.org/0000-0002-8553-6474</orcidid><orcidid>https://orcid.org/0000-0003-2480-767X</orcidid></search><sort><creationdate>20170308</creationdate><title>A nanocryotron comparator can connect single-flux-quantum circuits to conventional electronics</title><author>Zhao, Qing-Yuan ; McCaughan, Adam N ; Dane, Andrew E ; Berggren, Karl K ; Ortlepp, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-1fba38a8420c67e0ffa950cb2c14a27b4e7dd2b739c50ee15f3ae3ac997c9ef03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>hybrid system</topic><topic>single-flux quantum circuit</topic><topic>superconducting nanowire nanocryotron</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Qing-Yuan</creatorcontrib><creatorcontrib>McCaughan, Adam N</creatorcontrib><creatorcontrib>Dane, Andrew E</creatorcontrib><creatorcontrib>Berggren, Karl K</creatorcontrib><creatorcontrib>Ortlepp, Thomas</creatorcontrib><collection>CrossRef</collection><jtitle>Superconductor science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Qing-Yuan</au><au>McCaughan, Adam N</au><au>Dane, Andrew E</au><au>Berggren, Karl K</au><au>Ortlepp, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A nanocryotron comparator can connect single-flux-quantum circuits to conventional electronics</atitle><jtitle>Superconductor science &amp; technology</jtitle><stitle>SUST</stitle><addtitle>Supercond. Sci. Technol</addtitle><date>2017-03-08</date><risdate>2017</risdate><volume>30</volume><issue>4</issue><spage>44002</spage><pages>44002-</pages><issn>0953-2048</issn><eissn>1361-6668</eissn><coden>SUSTEF</coden><abstract>Integration with conventional electronics offers a straightforward and economical approach to upgrading existing superconducting technologies, such as scaling up superconducting detectors into large arrays and combining single flux quantum (SFQ) digital circuits with semiconductor logic gates and memories. However, direct output signals from superconducting devices (e.g., Josephson junctions) are usually not compatible with the input requirements of conventional devices (e.g., transistors). Here, we demonstrate the use of a single three-terminal superconducting-nanowire device, called the nanocryotron (nTron), as a digital comparator to combine SFQ circuits with mature semiconductor circuits such as complementary metal oxide semiconductor (CMOS) circuits. Since SFQ circuits can digitize output signals from general superconducting devices and CMOS circuits can interface existing CMOS-compatible electronics, our results demonstrate the feasibility of a general architecture that uses an nTron as an interface to realize a 'super-hybrid' system consisting of superconducting detectors, superconducting quantum electronics, CMOS logic gates and memories, and other conventional electronics.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6668/aa5f33</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-7453-9031</orcidid><orcidid>https://orcid.org/0000-0001-6929-4391</orcidid><orcidid>https://orcid.org/0000-0002-8553-6474</orcidid><orcidid>https://orcid.org/0000-0003-2480-767X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0953-2048
ispartof Superconductor science & technology, 2017-03, Vol.30 (4), p.44002
issn 0953-2048
1361-6668
language eng
recordid cdi_iop_journals_10_1088_1361_6668_aa5f33
source Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)
subjects hybrid system
single-flux quantum circuit
superconducting nanowire nanocryotron
title A nanocryotron comparator can connect single-flux-quantum circuits to conventional electronics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T12%3A33%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20nanocryotron%20comparator%20can%20connect%20single-flux-quantum%20circuits%20to%20conventional%20electronics&rft.jtitle=Superconductor%20science%20&%20technology&rft.au=Zhao,%20Qing-Yuan&rft.date=2017-03-08&rft.volume=30&rft.issue=4&rft.spage=44002&rft.pages=44002-&rft.issn=0953-2048&rft.eissn=1361-6668&rft.coden=SUSTEF&rft_id=info:doi/10.1088/1361-6668/aa5f33&rft_dat=%3Ciop_cross%3Esustaa5f33%3C/iop_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c379t-1fba38a8420c67e0ffa950cb2c14a27b4e7dd2b739c50ee15f3ae3ac997c9ef03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true