Loading…
A nanocryotron comparator can connect single-flux-quantum circuits to conventional electronics
Integration with conventional electronics offers a straightforward and economical approach to upgrading existing superconducting technologies, such as scaling up superconducting detectors into large arrays and combining single flux quantum (SFQ) digital circuits with semiconductor logic gates and me...
Saved in:
Published in: | Superconductor science & technology 2017-03, Vol.30 (4), p.44002 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c379t-1fba38a8420c67e0ffa950cb2c14a27b4e7dd2b739c50ee15f3ae3ac997c9ef03 |
---|---|
cites | cdi_FETCH-LOGICAL-c379t-1fba38a8420c67e0ffa950cb2c14a27b4e7dd2b739c50ee15f3ae3ac997c9ef03 |
container_end_page | |
container_issue | 4 |
container_start_page | 44002 |
container_title | Superconductor science & technology |
container_volume | 30 |
creator | Zhao, Qing-Yuan McCaughan, Adam N Dane, Andrew E Berggren, Karl K Ortlepp, Thomas |
description | Integration with conventional electronics offers a straightforward and economical approach to upgrading existing superconducting technologies, such as scaling up superconducting detectors into large arrays and combining single flux quantum (SFQ) digital circuits with semiconductor logic gates and memories. However, direct output signals from superconducting devices (e.g., Josephson junctions) are usually not compatible with the input requirements of conventional devices (e.g., transistors). Here, we demonstrate the use of a single three-terminal superconducting-nanowire device, called the nanocryotron (nTron), as a digital comparator to combine SFQ circuits with mature semiconductor circuits such as complementary metal oxide semiconductor (CMOS) circuits. Since SFQ circuits can digitize output signals from general superconducting devices and CMOS circuits can interface existing CMOS-compatible electronics, our results demonstrate the feasibility of a general architecture that uses an nTron as an interface to realize a 'super-hybrid' system consisting of superconducting detectors, superconducting quantum electronics, CMOS logic gates and memories, and other conventional electronics. |
doi_str_mv | 10.1088/1361-6668/aa5f33 |
format | article |
fullrecord | <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_iop_journals_10_1088_1361_6668_aa5f33</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>sustaa5f33</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-1fba38a8420c67e0ffa950cb2c14a27b4e7dd2b739c50ee15f3ae3ac997c9ef03</originalsourceid><addsrcrecordid>eNp9kM1LAzEQxYMoWKt3j3v04NrJZj-PpWgVCl70apidJpKyTdYkK_a_d5eKJ_E0zPDeY96PsWsOdxzqesFFydOyLOsFYqGFOGGz39Mpm0FTiDSDvD5nFyHsADivRTZjb8vEonXkDy56ZxNy-x49RucTwmm1VlFMgrHvnUp1N3ylHwPaOOwTMp4GE0MS3aT7VDYaZ7FLVDdaxjBD4ZKdaeyCuvqZc_b6cP-yekw3z-un1XKTkqiamHLdoqixzjOgslKgNTYFUJsRzzGr2lxV223WVqKhApTiY0FUAqlpKmqUBjFncMwl70LwSsvemz36g-QgJz5ygiEnGPLIZ7TcHi3G9XLnBj--Hv6T3_whD0OIUoDMJeQ5QCb7rRbfnQh36Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A nanocryotron comparator can connect single-flux-quantum circuits to conventional electronics</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Zhao, Qing-Yuan ; McCaughan, Adam N ; Dane, Andrew E ; Berggren, Karl K ; Ortlepp, Thomas</creator><creatorcontrib>Zhao, Qing-Yuan ; McCaughan, Adam N ; Dane, Andrew E ; Berggren, Karl K ; Ortlepp, Thomas</creatorcontrib><description>Integration with conventional electronics offers a straightforward and economical approach to upgrading existing superconducting technologies, such as scaling up superconducting detectors into large arrays and combining single flux quantum (SFQ) digital circuits with semiconductor logic gates and memories. However, direct output signals from superconducting devices (e.g., Josephson junctions) are usually not compatible with the input requirements of conventional devices (e.g., transistors). Here, we demonstrate the use of a single three-terminal superconducting-nanowire device, called the nanocryotron (nTron), as a digital comparator to combine SFQ circuits with mature semiconductor circuits such as complementary metal oxide semiconductor (CMOS) circuits. Since SFQ circuits can digitize output signals from general superconducting devices and CMOS circuits can interface existing CMOS-compatible electronics, our results demonstrate the feasibility of a general architecture that uses an nTron as an interface to realize a 'super-hybrid' system consisting of superconducting detectors, superconducting quantum electronics, CMOS logic gates and memories, and other conventional electronics.</description><identifier>ISSN: 0953-2048</identifier><identifier>EISSN: 1361-6668</identifier><identifier>DOI: 10.1088/1361-6668/aa5f33</identifier><identifier>CODEN: SUSTEF</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>hybrid system ; single-flux quantum circuit ; superconducting nanowire nanocryotron</subject><ispartof>Superconductor science & technology, 2017-03, Vol.30 (4), p.44002</ispartof><rights>2017 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-1fba38a8420c67e0ffa950cb2c14a27b4e7dd2b739c50ee15f3ae3ac997c9ef03</citedby><cites>FETCH-LOGICAL-c379t-1fba38a8420c67e0ffa950cb2c14a27b4e7dd2b739c50ee15f3ae3ac997c9ef03</cites><orcidid>0000-0001-7453-9031 ; 0000-0001-6929-4391 ; 0000-0002-8553-6474 ; 0000-0003-2480-767X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zhao, Qing-Yuan</creatorcontrib><creatorcontrib>McCaughan, Adam N</creatorcontrib><creatorcontrib>Dane, Andrew E</creatorcontrib><creatorcontrib>Berggren, Karl K</creatorcontrib><creatorcontrib>Ortlepp, Thomas</creatorcontrib><title>A nanocryotron comparator can connect single-flux-quantum circuits to conventional electronics</title><title>Superconductor science & technology</title><addtitle>SUST</addtitle><addtitle>Supercond. Sci. Technol</addtitle><description>Integration with conventional electronics offers a straightforward and economical approach to upgrading existing superconducting technologies, such as scaling up superconducting detectors into large arrays and combining single flux quantum (SFQ) digital circuits with semiconductor logic gates and memories. However, direct output signals from superconducting devices (e.g., Josephson junctions) are usually not compatible with the input requirements of conventional devices (e.g., transistors). Here, we demonstrate the use of a single three-terminal superconducting-nanowire device, called the nanocryotron (nTron), as a digital comparator to combine SFQ circuits with mature semiconductor circuits such as complementary metal oxide semiconductor (CMOS) circuits. Since SFQ circuits can digitize output signals from general superconducting devices and CMOS circuits can interface existing CMOS-compatible electronics, our results demonstrate the feasibility of a general architecture that uses an nTron as an interface to realize a 'super-hybrid' system consisting of superconducting detectors, superconducting quantum electronics, CMOS logic gates and memories, and other conventional electronics.</description><subject>hybrid system</subject><subject>single-flux quantum circuit</subject><subject>superconducting nanowire nanocryotron</subject><issn>0953-2048</issn><issn>1361-6668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kM1LAzEQxYMoWKt3j3v04NrJZj-PpWgVCl70apidJpKyTdYkK_a_d5eKJ_E0zPDeY96PsWsOdxzqesFFydOyLOsFYqGFOGGz39Mpm0FTiDSDvD5nFyHsADivRTZjb8vEonXkDy56ZxNy-x49RucTwmm1VlFMgrHvnUp1N3ylHwPaOOwTMp4GE0MS3aT7VDYaZ7FLVDdaxjBD4ZKdaeyCuvqZc_b6cP-yekw3z-un1XKTkqiamHLdoqixzjOgslKgNTYFUJsRzzGr2lxV223WVqKhApTiY0FUAqlpKmqUBjFncMwl70LwSsvemz36g-QgJz5ygiEnGPLIZ7TcHi3G9XLnBj--Hv6T3_whD0OIUoDMJeQ5QCb7rRbfnQh36Q</recordid><startdate>20170308</startdate><enddate>20170308</enddate><creator>Zhao, Qing-Yuan</creator><creator>McCaughan, Adam N</creator><creator>Dane, Andrew E</creator><creator>Berggren, Karl K</creator><creator>Ortlepp, Thomas</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7453-9031</orcidid><orcidid>https://orcid.org/0000-0001-6929-4391</orcidid><orcidid>https://orcid.org/0000-0002-8553-6474</orcidid><orcidid>https://orcid.org/0000-0003-2480-767X</orcidid></search><sort><creationdate>20170308</creationdate><title>A nanocryotron comparator can connect single-flux-quantum circuits to conventional electronics</title><author>Zhao, Qing-Yuan ; McCaughan, Adam N ; Dane, Andrew E ; Berggren, Karl K ; Ortlepp, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-1fba38a8420c67e0ffa950cb2c14a27b4e7dd2b739c50ee15f3ae3ac997c9ef03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>hybrid system</topic><topic>single-flux quantum circuit</topic><topic>superconducting nanowire nanocryotron</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Qing-Yuan</creatorcontrib><creatorcontrib>McCaughan, Adam N</creatorcontrib><creatorcontrib>Dane, Andrew E</creatorcontrib><creatorcontrib>Berggren, Karl K</creatorcontrib><creatorcontrib>Ortlepp, Thomas</creatorcontrib><collection>CrossRef</collection><jtitle>Superconductor science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Qing-Yuan</au><au>McCaughan, Adam N</au><au>Dane, Andrew E</au><au>Berggren, Karl K</au><au>Ortlepp, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A nanocryotron comparator can connect single-flux-quantum circuits to conventional electronics</atitle><jtitle>Superconductor science & technology</jtitle><stitle>SUST</stitle><addtitle>Supercond. Sci. Technol</addtitle><date>2017-03-08</date><risdate>2017</risdate><volume>30</volume><issue>4</issue><spage>44002</spage><pages>44002-</pages><issn>0953-2048</issn><eissn>1361-6668</eissn><coden>SUSTEF</coden><abstract>Integration with conventional electronics offers a straightforward and economical approach to upgrading existing superconducting technologies, such as scaling up superconducting detectors into large arrays and combining single flux quantum (SFQ) digital circuits with semiconductor logic gates and memories. However, direct output signals from superconducting devices (e.g., Josephson junctions) are usually not compatible with the input requirements of conventional devices (e.g., transistors). Here, we demonstrate the use of a single three-terminal superconducting-nanowire device, called the nanocryotron (nTron), as a digital comparator to combine SFQ circuits with mature semiconductor circuits such as complementary metal oxide semiconductor (CMOS) circuits. Since SFQ circuits can digitize output signals from general superconducting devices and CMOS circuits can interface existing CMOS-compatible electronics, our results demonstrate the feasibility of a general architecture that uses an nTron as an interface to realize a 'super-hybrid' system consisting of superconducting detectors, superconducting quantum electronics, CMOS logic gates and memories, and other conventional electronics.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6668/aa5f33</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-7453-9031</orcidid><orcidid>https://orcid.org/0000-0001-6929-4391</orcidid><orcidid>https://orcid.org/0000-0002-8553-6474</orcidid><orcidid>https://orcid.org/0000-0003-2480-767X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0953-2048 |
ispartof | Superconductor science & technology, 2017-03, Vol.30 (4), p.44002 |
issn | 0953-2048 1361-6668 |
language | eng |
recordid | cdi_iop_journals_10_1088_1361_6668_aa5f33 |
source | Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List) |
subjects | hybrid system single-flux quantum circuit superconducting nanowire nanocryotron |
title | A nanocryotron comparator can connect single-flux-quantum circuits to conventional electronics |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T12%3A33%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20nanocryotron%20comparator%20can%20connect%20single-flux-quantum%20circuits%20to%20conventional%20electronics&rft.jtitle=Superconductor%20science%20&%20technology&rft.au=Zhao,%20Qing-Yuan&rft.date=2017-03-08&rft.volume=30&rft.issue=4&rft.spage=44002&rft.pages=44002-&rft.issn=0953-2048&rft.eissn=1361-6668&rft.coden=SUSTEF&rft_id=info:doi/10.1088/1361-6668/aa5f33&rft_dat=%3Ciop_cross%3Esustaa5f33%3C/iop_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c379t-1fba38a8420c67e0ffa950cb2c14a27b4e7dd2b739c50ee15f3ae3ac997c9ef03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |