Loading…

Optimal tunneling enhances the quantum photovoltaic effect in double quantum dots

We investigate the quantum photovoltaic effect in double quantum dots by applying the nonequilibrium quantum master equation. A drastic suppression of the photovoltaic current is observed near the open circuit voltage, which leads to a large filling factor. We find that there always exists an optima...

Full description

Saved in:
Bibliographic Details
Published in:New journal of physics 2014-04, Vol.16 (4), p.45019-16
Main Authors: Wang, Chen, Ren, Jie, Cao, Jianshu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We investigate the quantum photovoltaic effect in double quantum dots by applying the nonequilibrium quantum master equation. A drastic suppression of the photovoltaic current is observed near the open circuit voltage, which leads to a large filling factor. We find that there always exists an optimal inter-dot tunneling that significantly enhances the photovoltaic current. Maximal output power will also be obtained around the optimal inter-dot tunneling. Moreover, the open circuit voltage behaves approximately as the product of the eigen-level gap and the Carnot efficiency. These results suggest a great potential for double quantum dots as efficient photovoltaic devices.
ISSN:1367-2630
1367-2630
DOI:10.1088/1367-2630/16/4/045019