Loading…
Gutzwiller density functional theory: a formal derivation and application to ferromagnetic nickel
We present a detailed derivation of the Gutzwiller density functional theory (DFT) that covers all conceivable cases of symmetries and Gutzwiller wave functions. The method is used in a study of ferromagnetic nickel where we calculate ground state properties (lattice constant, bulk modulus, spin mag...
Saved in:
Published in: | New journal of physics 2014-09, Vol.16 (9), p.93034-35 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We present a detailed derivation of the Gutzwiller density functional theory (DFT) that covers all conceivable cases of symmetries and Gutzwiller wave functions. The method is used in a study of ferromagnetic nickel where we calculate ground state properties (lattice constant, bulk modulus, spin magnetic moment) and the quasi-particle band structure. Our method resolves most shortcomings of an ordinary density functional calculation on nickel. However, the quality of the results strongly depends on the particular choice of the double-counting correction. This constitutes a serious problem for all methods that attempt to merge DFT with correlated-electron approaches based on Hubbard-type local interactions. |
---|---|
ISSN: | 1367-2630 1367-2630 |
DOI: | 10.1088/1367-2630/16/9/093034 |