Loading…
Nanoribbons of large-gap quantum spin Hall insulator: electronic structures and transport properties
Two-dimensional Bi grown on semiconductor substrate, a large-gap quantum spin Hall insulator characterized by a ( p x , p y )-orbital hexagonal lattice, has been theoretically proposed and experimentally confirmed. Here, by combining tight-binding modeling with first-principles calculations, we inve...
Saved in:
Published in: | New journal of physics 2024-02, Vol.26 (2), p.23059 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c401t-c3a747240c3fbaf6cbd2fb553e8b04ec806ce5adaeda4d953e1a88bc307dc2503 |
container_end_page | |
container_issue | 2 |
container_start_page | 23059 |
container_title | New journal of physics |
container_volume | 26 |
creator | Wu, Meimei Hua, Chenqiang Song, Biyu Zhi, Guo-Xiang Niu, Tianchao Zhou, Miao |
description | Two-dimensional Bi grown on semiconductor substrate, a large-gap quantum spin Hall insulator characterized by a (
p
x
,
p
y
)-orbital hexagonal lattice, has been theoretically proposed and experimentally confirmed. Here, by combining tight-binding modeling with first-principles calculations, we investigate the electronic structures and quantum transport properties of Bi nanoribbons (NRs), focusing on the topological edge states for nanoelectronics. We reveal that band gap emerges due to the quantum confinement, and the gaps size depends crucially on the width and edge shape: for zigzag NRs, the gap decreases monotonically with the increase of width; while for armchair NRs, it can be categorized into three subgroups with band-gap hierarchies of
E
g
(
3
p
−
1
)
>
E
g
(
3
p
)
>
E
g
(
3
p
+
1
)
, so that the overall relation is an oscillating dependence dumped by 1/width decay. Quantum transport calculations demonstrate that the conductance is quantized to 2
e
2
/
h
, and an applied gate voltage can efficiently regulate the conductance plateau, originating from the interplay between gate voltage and topological gaps. Furthermore, the quantized conductance remains robust against strong disorder, suggesting the unique advantage of topological states for electronic transport. This work not only provides fundamental insights into the electronic properties of topological insulator nanostructures, but also sheds light on the potential applications of exotic states for quantum devices compatible with semiconductor technology. |
doi_str_mv | 10.1088/1367-2630/ad2a82 |
format | article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_iop_journals_10_1088_1367_2630_ad2a82</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_22bf1d5825f249dfaaa9b2b1611bc061</doaj_id><sourcerecordid>2933814276</sourcerecordid><originalsourceid>FETCH-LOGICAL-c401t-c3a747240c3fbaf6cbd2fb553e8b04ec806ce5adaeda4d953e1a88bc307dc2503</originalsourceid><addsrcrecordid>eNp9kbtPHDEQxlcoSBBIn9ISBU0W7PE-vHQRIgHplDRQW-PXaU97trG9Rf777GXRhSJKNaNPv_nmVVWfGb1hVIhbxru-ho7TWzSAAk6q86P04V1-Vn3MeUcpYwLgvDI_0Ic0KhV8JsGRCdPW1luM5HVGX-Y9yXH05BGniYw-zxOWkO6InawuKfhRk1zSrMucbCboDSkJfY4hFRJTiDaV0ebL6tThlO2nt3hRvXx7eL5_rDc_vz_df93UuqGs1Jpj3_TQUM2dQtdpZcCptuVWKNpYLWinbYsGrcHGDIvOUAilOe2Nhpbyi-pp9TUBdzKmcY_plww4yj9CSFuJy0B6shJAOWZaAa2DZjAOEQcFinWMKU07tnhdrV7LGq-zzUXuwpz8Mr6EgXPBGui7haIrpVPIOVl37MqoPPxFHg4vD4eX61-Wki9ryRjiX8__4Nf_wP0uLpQESYHTdpDROP4bFC6eFg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2933814276</pqid></control><display><type>article</type><title>Nanoribbons of large-gap quantum spin Hall insulator: electronic structures and transport properties</title><source>Publicly Available Content Database</source><creator>Wu, Meimei ; Hua, Chenqiang ; Song, Biyu ; Zhi, Guo-Xiang ; Niu, Tianchao ; Zhou, Miao</creator><creatorcontrib>Wu, Meimei ; Hua, Chenqiang ; Song, Biyu ; Zhi, Guo-Xiang ; Niu, Tianchao ; Zhou, Miao</creatorcontrib><description>Two-dimensional Bi grown on semiconductor substrate, a large-gap quantum spin Hall insulator characterized by a (
p
x
,
p
y
)-orbital hexagonal lattice, has been theoretically proposed and experimentally confirmed. Here, by combining tight-binding modeling with first-principles calculations, we investigate the electronic structures and quantum transport properties of Bi nanoribbons (NRs), focusing on the topological edge states for nanoelectronics. We reveal that band gap emerges due to the quantum confinement, and the gaps size depends crucially on the width and edge shape: for zigzag NRs, the gap decreases monotonically with the increase of width; while for armchair NRs, it can be categorized into three subgroups with band-gap hierarchies of
E
g
(
3
p
−
1
)
>
E
g
(
3
p
)
>
E
g
(
3
p
+
1
)
, so that the overall relation is an oscillating dependence dumped by 1/width decay. Quantum transport calculations demonstrate that the conductance is quantized to 2
e
2
/
h
, and an applied gate voltage can efficiently regulate the conductance plateau, originating from the interplay between gate voltage and topological gaps. Furthermore, the quantized conductance remains robust against strong disorder, suggesting the unique advantage of topological states for electronic transport. This work not only provides fundamental insights into the electronic properties of topological insulator nanostructures, but also sheds light on the potential applications of exotic states for quantum devices compatible with semiconductor technology.</description><identifier>ISSN: 1367-2630</identifier><identifier>EISSN: 1367-2630</identifier><identifier>DOI: 10.1088/1367-2630/ad2a82</identifier><identifier>CODEN: NJOPFM</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Electric potential ; Electron spin ; Electron transport ; electronic structure ; Electrons ; Energy gap ; epitaxial growth ; First principles ; Graphene ; Hexagonal lattice ; Hierarchies ; Nanoelectronics ; Nanoribbons ; Physics ; Quantum confinement ; quantum spin Hall insulator ; Quantum transport ; semiconductor substrate ; Spectrum analysis ; Subgroups ; Substrates ; Topological insulators ; Transport properties ; Voltage</subject><ispartof>New journal of physics, 2024-02, Vol.26 (2), p.23059</ispartof><rights>2024 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft</rights><rights>2024 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c401t-c3a747240c3fbaf6cbd2fb553e8b04ec806ce5adaeda4d953e1a88bc307dc2503</cites><orcidid>0000-0003-1390-372X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2933814276?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Wu, Meimei</creatorcontrib><creatorcontrib>Hua, Chenqiang</creatorcontrib><creatorcontrib>Song, Biyu</creatorcontrib><creatorcontrib>Zhi, Guo-Xiang</creatorcontrib><creatorcontrib>Niu, Tianchao</creatorcontrib><creatorcontrib>Zhou, Miao</creatorcontrib><title>Nanoribbons of large-gap quantum spin Hall insulator: electronic structures and transport properties</title><title>New journal of physics</title><addtitle>NJP</addtitle><addtitle>New J. Phys</addtitle><description>Two-dimensional Bi grown on semiconductor substrate, a large-gap quantum spin Hall insulator characterized by a (
p
x
,
p
y
)-orbital hexagonal lattice, has been theoretically proposed and experimentally confirmed. Here, by combining tight-binding modeling with first-principles calculations, we investigate the electronic structures and quantum transport properties of Bi nanoribbons (NRs), focusing on the topological edge states for nanoelectronics. We reveal that band gap emerges due to the quantum confinement, and the gaps size depends crucially on the width and edge shape: for zigzag NRs, the gap decreases monotonically with the increase of width; while for armchair NRs, it can be categorized into three subgroups with band-gap hierarchies of
E
g
(
3
p
−
1
)
>
E
g
(
3
p
)
>
E
g
(
3
p
+
1
)
, so that the overall relation is an oscillating dependence dumped by 1/width decay. Quantum transport calculations demonstrate that the conductance is quantized to 2
e
2
/
h
, and an applied gate voltage can efficiently regulate the conductance plateau, originating from the interplay between gate voltage and topological gaps. Furthermore, the quantized conductance remains robust against strong disorder, suggesting the unique advantage of topological states for electronic transport. This work not only provides fundamental insights into the electronic properties of topological insulator nanostructures, but also sheds light on the potential applications of exotic states for quantum devices compatible with semiconductor technology.</description><subject>Electric potential</subject><subject>Electron spin</subject><subject>Electron transport</subject><subject>electronic structure</subject><subject>Electrons</subject><subject>Energy gap</subject><subject>epitaxial growth</subject><subject>First principles</subject><subject>Graphene</subject><subject>Hexagonal lattice</subject><subject>Hierarchies</subject><subject>Nanoelectronics</subject><subject>Nanoribbons</subject><subject>Physics</subject><subject>Quantum confinement</subject><subject>quantum spin Hall insulator</subject><subject>Quantum transport</subject><subject>semiconductor substrate</subject><subject>Spectrum analysis</subject><subject>Subgroups</subject><subject>Substrates</subject><subject>Topological insulators</subject><subject>Transport properties</subject><subject>Voltage</subject><issn>1367-2630</issn><issn>1367-2630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kbtPHDEQxlcoSBBIn9ISBU0W7PE-vHQRIgHplDRQW-PXaU97trG9Rf777GXRhSJKNaNPv_nmVVWfGb1hVIhbxru-ho7TWzSAAk6q86P04V1-Vn3MeUcpYwLgvDI_0Ic0KhV8JsGRCdPW1luM5HVGX-Y9yXH05BGniYw-zxOWkO6InawuKfhRk1zSrMucbCboDSkJfY4hFRJTiDaV0ebL6tThlO2nt3hRvXx7eL5_rDc_vz_df93UuqGs1Jpj3_TQUM2dQtdpZcCptuVWKNpYLWinbYsGrcHGDIvOUAilOe2Nhpbyi-pp9TUBdzKmcY_plww4yj9CSFuJy0B6shJAOWZaAa2DZjAOEQcFinWMKU07tnhdrV7LGq-zzUXuwpz8Mr6EgXPBGui7haIrpVPIOVl37MqoPPxFHg4vD4eX61-Wki9ryRjiX8__4Nf_wP0uLpQESYHTdpDROP4bFC6eFg</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Wu, Meimei</creator><creator>Hua, Chenqiang</creator><creator>Song, Biyu</creator><creator>Zhi, Guo-Xiang</creator><creator>Niu, Tianchao</creator><creator>Zhou, Miao</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>L7M</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1390-372X</orcidid></search><sort><creationdate>20240201</creationdate><title>Nanoribbons of large-gap quantum spin Hall insulator: electronic structures and transport properties</title><author>Wu, Meimei ; Hua, Chenqiang ; Song, Biyu ; Zhi, Guo-Xiang ; Niu, Tianchao ; Zhou, Miao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c401t-c3a747240c3fbaf6cbd2fb553e8b04ec806ce5adaeda4d953e1a88bc307dc2503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Electric potential</topic><topic>Electron spin</topic><topic>Electron transport</topic><topic>electronic structure</topic><topic>Electrons</topic><topic>Energy gap</topic><topic>epitaxial growth</topic><topic>First principles</topic><topic>Graphene</topic><topic>Hexagonal lattice</topic><topic>Hierarchies</topic><topic>Nanoelectronics</topic><topic>Nanoribbons</topic><topic>Physics</topic><topic>Quantum confinement</topic><topic>quantum spin Hall insulator</topic><topic>Quantum transport</topic><topic>semiconductor substrate</topic><topic>Spectrum analysis</topic><topic>Subgroups</topic><topic>Substrates</topic><topic>Topological insulators</topic><topic>Transport properties</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Meimei</creatorcontrib><creatorcontrib>Hua, Chenqiang</creatorcontrib><creatorcontrib>Song, Biyu</creatorcontrib><creatorcontrib>Zhi, Guo-Xiang</creatorcontrib><creatorcontrib>Niu, Tianchao</creatorcontrib><creatorcontrib>Zhou, Miao</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>New journal of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Meimei</au><au>Hua, Chenqiang</au><au>Song, Biyu</au><au>Zhi, Guo-Xiang</au><au>Niu, Tianchao</au><au>Zhou, Miao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanoribbons of large-gap quantum spin Hall insulator: electronic structures and transport properties</atitle><jtitle>New journal of physics</jtitle><stitle>NJP</stitle><addtitle>New J. Phys</addtitle><date>2024-02-01</date><risdate>2024</risdate><volume>26</volume><issue>2</issue><spage>23059</spage><pages>23059-</pages><issn>1367-2630</issn><eissn>1367-2630</eissn><coden>NJOPFM</coden><abstract>Two-dimensional Bi grown on semiconductor substrate, a large-gap quantum spin Hall insulator characterized by a (
p
x
,
p
y
)-orbital hexagonal lattice, has been theoretically proposed and experimentally confirmed. Here, by combining tight-binding modeling with first-principles calculations, we investigate the electronic structures and quantum transport properties of Bi nanoribbons (NRs), focusing on the topological edge states for nanoelectronics. We reveal that band gap emerges due to the quantum confinement, and the gaps size depends crucially on the width and edge shape: for zigzag NRs, the gap decreases monotonically with the increase of width; while for armchair NRs, it can be categorized into three subgroups with band-gap hierarchies of
E
g
(
3
p
−
1
)
>
E
g
(
3
p
)
>
E
g
(
3
p
+
1
)
, so that the overall relation is an oscillating dependence dumped by 1/width decay. Quantum transport calculations demonstrate that the conductance is quantized to 2
e
2
/
h
, and an applied gate voltage can efficiently regulate the conductance plateau, originating from the interplay between gate voltage and topological gaps. Furthermore, the quantized conductance remains robust against strong disorder, suggesting the unique advantage of topological states for electronic transport. This work not only provides fundamental insights into the electronic properties of topological insulator nanostructures, but also sheds light on the potential applications of exotic states for quantum devices compatible with semiconductor technology.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1367-2630/ad2a82</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1390-372X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1367-2630 |
ispartof | New journal of physics, 2024-02, Vol.26 (2), p.23059 |
issn | 1367-2630 1367-2630 |
language | eng |
recordid | cdi_iop_journals_10_1088_1367_2630_ad2a82 |
source | Publicly Available Content Database |
subjects | Electric potential Electron spin Electron transport electronic structure Electrons Energy gap epitaxial growth First principles Graphene Hexagonal lattice Hierarchies Nanoelectronics Nanoribbons Physics Quantum confinement quantum spin Hall insulator Quantum transport semiconductor substrate Spectrum analysis Subgroups Substrates Topological insulators Transport properties Voltage |
title | Nanoribbons of large-gap quantum spin Hall insulator: electronic structures and transport properties |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T16%3A45%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanoribbons%20of%20large-gap%20quantum%20spin%20Hall%20insulator:%20electronic%20structures%20and%20transport%20properties&rft.jtitle=New%20journal%20of%20physics&rft.au=Wu,%20Meimei&rft.date=2024-02-01&rft.volume=26&rft.issue=2&rft.spage=23059&rft.pages=23059-&rft.issn=1367-2630&rft.eissn=1367-2630&rft.coden=NJOPFM&rft_id=info:doi/10.1088/1367-2630/ad2a82&rft_dat=%3Cproquest_iop_j%3E2933814276%3C/proquest_iop_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c401t-c3a747240c3fbaf6cbd2fb553e8b04ec806ce5adaeda4d953e1a88bc307dc2503%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2933814276&rft_id=info:pmid/&rfr_iscdi=true |