Loading…

Nanoribbons of large-gap quantum spin Hall insulator: electronic structures and transport properties

Two-dimensional Bi grown on semiconductor substrate, a large-gap quantum spin Hall insulator characterized by a ( p x , p y )-orbital hexagonal lattice, has been theoretically proposed and experimentally confirmed. Here, by combining tight-binding modeling with first-principles calculations, we inve...

Full description

Saved in:
Bibliographic Details
Published in:New journal of physics 2024-02, Vol.26 (2), p.23059
Main Authors: Wu, Meimei, Hua, Chenqiang, Song, Biyu, Zhi, Guo-Xiang, Niu, Tianchao, Zhou, Miao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c401t-c3a747240c3fbaf6cbd2fb553e8b04ec806ce5adaeda4d953e1a88bc307dc2503
container_end_page
container_issue 2
container_start_page 23059
container_title New journal of physics
container_volume 26
creator Wu, Meimei
Hua, Chenqiang
Song, Biyu
Zhi, Guo-Xiang
Niu, Tianchao
Zhou, Miao
description Two-dimensional Bi grown on semiconductor substrate, a large-gap quantum spin Hall insulator characterized by a ( p x , p y )-orbital hexagonal lattice, has been theoretically proposed and experimentally confirmed. Here, by combining tight-binding modeling with first-principles calculations, we investigate the electronic structures and quantum transport properties of Bi nanoribbons (NRs), focusing on the topological edge states for nanoelectronics. We reveal that band gap emerges due to the quantum confinement, and the gaps size depends crucially on the width and edge shape: for zigzag NRs, the gap decreases monotonically with the increase of width; while for armchair NRs, it can be categorized into three subgroups with band-gap hierarchies of E g ( 3 p − 1 ) > E g ( 3 p ) > E g ( 3 p + 1 ) , so that the overall relation is an oscillating dependence dumped by 1/width decay. Quantum transport calculations demonstrate that the conductance is quantized to 2 e 2 / h , and an applied gate voltage can efficiently regulate the conductance plateau, originating from the interplay between gate voltage and topological gaps. Furthermore, the quantized conductance remains robust against strong disorder, suggesting the unique advantage of topological states for electronic transport. This work not only provides fundamental insights into the electronic properties of topological insulator nanostructures, but also sheds light on the potential applications of exotic states for quantum devices compatible with semiconductor technology.
doi_str_mv 10.1088/1367-2630/ad2a82
format article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_iop_journals_10_1088_1367_2630_ad2a82</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_22bf1d5825f249dfaaa9b2b1611bc061</doaj_id><sourcerecordid>2933814276</sourcerecordid><originalsourceid>FETCH-LOGICAL-c401t-c3a747240c3fbaf6cbd2fb553e8b04ec806ce5adaeda4d953e1a88bc307dc2503</originalsourceid><addsrcrecordid>eNp9kbtPHDEQxlcoSBBIn9ISBU0W7PE-vHQRIgHplDRQW-PXaU97trG9Rf777GXRhSJKNaNPv_nmVVWfGb1hVIhbxru-ho7TWzSAAk6q86P04V1-Vn3MeUcpYwLgvDI_0Ic0KhV8JsGRCdPW1luM5HVGX-Y9yXH05BGniYw-zxOWkO6InawuKfhRk1zSrMucbCboDSkJfY4hFRJTiDaV0ebL6tThlO2nt3hRvXx7eL5_rDc_vz_df93UuqGs1Jpj3_TQUM2dQtdpZcCptuVWKNpYLWinbYsGrcHGDIvOUAilOe2Nhpbyi-pp9TUBdzKmcY_plww4yj9CSFuJy0B6shJAOWZaAa2DZjAOEQcFinWMKU07tnhdrV7LGq-zzUXuwpz8Mr6EgXPBGui7haIrpVPIOVl37MqoPPxFHg4vD4eX61-Wki9ryRjiX8__4Nf_wP0uLpQESYHTdpDROP4bFC6eFg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2933814276</pqid></control><display><type>article</type><title>Nanoribbons of large-gap quantum spin Hall insulator: electronic structures and transport properties</title><source>Publicly Available Content Database</source><creator>Wu, Meimei ; Hua, Chenqiang ; Song, Biyu ; Zhi, Guo-Xiang ; Niu, Tianchao ; Zhou, Miao</creator><creatorcontrib>Wu, Meimei ; Hua, Chenqiang ; Song, Biyu ; Zhi, Guo-Xiang ; Niu, Tianchao ; Zhou, Miao</creatorcontrib><description>Two-dimensional Bi grown on semiconductor substrate, a large-gap quantum spin Hall insulator characterized by a ( p x , p y )-orbital hexagonal lattice, has been theoretically proposed and experimentally confirmed. Here, by combining tight-binding modeling with first-principles calculations, we investigate the electronic structures and quantum transport properties of Bi nanoribbons (NRs), focusing on the topological edge states for nanoelectronics. We reveal that band gap emerges due to the quantum confinement, and the gaps size depends crucially on the width and edge shape: for zigzag NRs, the gap decreases monotonically with the increase of width; while for armchair NRs, it can be categorized into three subgroups with band-gap hierarchies of E g ( 3 p − 1 ) &gt; E g ( 3 p ) &gt; E g ( 3 p + 1 ) , so that the overall relation is an oscillating dependence dumped by 1/width decay. Quantum transport calculations demonstrate that the conductance is quantized to 2 e 2 / h , and an applied gate voltage can efficiently regulate the conductance plateau, originating from the interplay between gate voltage and topological gaps. Furthermore, the quantized conductance remains robust against strong disorder, suggesting the unique advantage of topological states for electronic transport. This work not only provides fundamental insights into the electronic properties of topological insulator nanostructures, but also sheds light on the potential applications of exotic states for quantum devices compatible with semiconductor technology.</description><identifier>ISSN: 1367-2630</identifier><identifier>EISSN: 1367-2630</identifier><identifier>DOI: 10.1088/1367-2630/ad2a82</identifier><identifier>CODEN: NJOPFM</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Electric potential ; Electron spin ; Electron transport ; electronic structure ; Electrons ; Energy gap ; epitaxial growth ; First principles ; Graphene ; Hexagonal lattice ; Hierarchies ; Nanoelectronics ; Nanoribbons ; Physics ; Quantum confinement ; quantum spin Hall insulator ; Quantum transport ; semiconductor substrate ; Spectrum analysis ; Subgroups ; Substrates ; Topological insulators ; Transport properties ; Voltage</subject><ispartof>New journal of physics, 2024-02, Vol.26 (2), p.23059</ispartof><rights>2024 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft</rights><rights>2024 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c401t-c3a747240c3fbaf6cbd2fb553e8b04ec806ce5adaeda4d953e1a88bc307dc2503</cites><orcidid>0000-0003-1390-372X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2933814276?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Wu, Meimei</creatorcontrib><creatorcontrib>Hua, Chenqiang</creatorcontrib><creatorcontrib>Song, Biyu</creatorcontrib><creatorcontrib>Zhi, Guo-Xiang</creatorcontrib><creatorcontrib>Niu, Tianchao</creatorcontrib><creatorcontrib>Zhou, Miao</creatorcontrib><title>Nanoribbons of large-gap quantum spin Hall insulator: electronic structures and transport properties</title><title>New journal of physics</title><addtitle>NJP</addtitle><addtitle>New J. Phys</addtitle><description>Two-dimensional Bi grown on semiconductor substrate, a large-gap quantum spin Hall insulator characterized by a ( p x , p y )-orbital hexagonal lattice, has been theoretically proposed and experimentally confirmed. Here, by combining tight-binding modeling with first-principles calculations, we investigate the electronic structures and quantum transport properties of Bi nanoribbons (NRs), focusing on the topological edge states for nanoelectronics. We reveal that band gap emerges due to the quantum confinement, and the gaps size depends crucially on the width and edge shape: for zigzag NRs, the gap decreases monotonically with the increase of width; while for armchair NRs, it can be categorized into three subgroups with band-gap hierarchies of E g ( 3 p − 1 ) &gt; E g ( 3 p ) &gt; E g ( 3 p + 1 ) , so that the overall relation is an oscillating dependence dumped by 1/width decay. Quantum transport calculations demonstrate that the conductance is quantized to 2 e 2 / h , and an applied gate voltage can efficiently regulate the conductance plateau, originating from the interplay between gate voltage and topological gaps. Furthermore, the quantized conductance remains robust against strong disorder, suggesting the unique advantage of topological states for electronic transport. This work not only provides fundamental insights into the electronic properties of topological insulator nanostructures, but also sheds light on the potential applications of exotic states for quantum devices compatible with semiconductor technology.</description><subject>Electric potential</subject><subject>Electron spin</subject><subject>Electron transport</subject><subject>electronic structure</subject><subject>Electrons</subject><subject>Energy gap</subject><subject>epitaxial growth</subject><subject>First principles</subject><subject>Graphene</subject><subject>Hexagonal lattice</subject><subject>Hierarchies</subject><subject>Nanoelectronics</subject><subject>Nanoribbons</subject><subject>Physics</subject><subject>Quantum confinement</subject><subject>quantum spin Hall insulator</subject><subject>Quantum transport</subject><subject>semiconductor substrate</subject><subject>Spectrum analysis</subject><subject>Subgroups</subject><subject>Substrates</subject><subject>Topological insulators</subject><subject>Transport properties</subject><subject>Voltage</subject><issn>1367-2630</issn><issn>1367-2630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kbtPHDEQxlcoSBBIn9ISBU0W7PE-vHQRIgHplDRQW-PXaU97trG9Rf777GXRhSJKNaNPv_nmVVWfGb1hVIhbxru-ho7TWzSAAk6q86P04V1-Vn3MeUcpYwLgvDI_0Ic0KhV8JsGRCdPW1luM5HVGX-Y9yXH05BGniYw-zxOWkO6InawuKfhRk1zSrMucbCboDSkJfY4hFRJTiDaV0ebL6tThlO2nt3hRvXx7eL5_rDc_vz_df93UuqGs1Jpj3_TQUM2dQtdpZcCptuVWKNpYLWinbYsGrcHGDIvOUAilOe2Nhpbyi-pp9TUBdzKmcY_plww4yj9CSFuJy0B6shJAOWZaAa2DZjAOEQcFinWMKU07tnhdrV7LGq-zzUXuwpz8Mr6EgXPBGui7haIrpVPIOVl37MqoPPxFHg4vD4eX61-Wki9ryRjiX8__4Nf_wP0uLpQESYHTdpDROP4bFC6eFg</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Wu, Meimei</creator><creator>Hua, Chenqiang</creator><creator>Song, Biyu</creator><creator>Zhi, Guo-Xiang</creator><creator>Niu, Tianchao</creator><creator>Zhou, Miao</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>L7M</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1390-372X</orcidid></search><sort><creationdate>20240201</creationdate><title>Nanoribbons of large-gap quantum spin Hall insulator: electronic structures and transport properties</title><author>Wu, Meimei ; Hua, Chenqiang ; Song, Biyu ; Zhi, Guo-Xiang ; Niu, Tianchao ; Zhou, Miao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c401t-c3a747240c3fbaf6cbd2fb553e8b04ec806ce5adaeda4d953e1a88bc307dc2503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Electric potential</topic><topic>Electron spin</topic><topic>Electron transport</topic><topic>electronic structure</topic><topic>Electrons</topic><topic>Energy gap</topic><topic>epitaxial growth</topic><topic>First principles</topic><topic>Graphene</topic><topic>Hexagonal lattice</topic><topic>Hierarchies</topic><topic>Nanoelectronics</topic><topic>Nanoribbons</topic><topic>Physics</topic><topic>Quantum confinement</topic><topic>quantum spin Hall insulator</topic><topic>Quantum transport</topic><topic>semiconductor substrate</topic><topic>Spectrum analysis</topic><topic>Subgroups</topic><topic>Substrates</topic><topic>Topological insulators</topic><topic>Transport properties</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Meimei</creatorcontrib><creatorcontrib>Hua, Chenqiang</creatorcontrib><creatorcontrib>Song, Biyu</creatorcontrib><creatorcontrib>Zhi, Guo-Xiang</creatorcontrib><creatorcontrib>Niu, Tianchao</creatorcontrib><creatorcontrib>Zhou, Miao</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>New journal of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Meimei</au><au>Hua, Chenqiang</au><au>Song, Biyu</au><au>Zhi, Guo-Xiang</au><au>Niu, Tianchao</au><au>Zhou, Miao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanoribbons of large-gap quantum spin Hall insulator: electronic structures and transport properties</atitle><jtitle>New journal of physics</jtitle><stitle>NJP</stitle><addtitle>New J. Phys</addtitle><date>2024-02-01</date><risdate>2024</risdate><volume>26</volume><issue>2</issue><spage>23059</spage><pages>23059-</pages><issn>1367-2630</issn><eissn>1367-2630</eissn><coden>NJOPFM</coden><abstract>Two-dimensional Bi grown on semiconductor substrate, a large-gap quantum spin Hall insulator characterized by a ( p x , p y )-orbital hexagonal lattice, has been theoretically proposed and experimentally confirmed. Here, by combining tight-binding modeling with first-principles calculations, we investigate the electronic structures and quantum transport properties of Bi nanoribbons (NRs), focusing on the topological edge states for nanoelectronics. We reveal that band gap emerges due to the quantum confinement, and the gaps size depends crucially on the width and edge shape: for zigzag NRs, the gap decreases monotonically with the increase of width; while for armchair NRs, it can be categorized into three subgroups with band-gap hierarchies of E g ( 3 p − 1 ) &gt; E g ( 3 p ) &gt; E g ( 3 p + 1 ) , so that the overall relation is an oscillating dependence dumped by 1/width decay. Quantum transport calculations demonstrate that the conductance is quantized to 2 e 2 / h , and an applied gate voltage can efficiently regulate the conductance plateau, originating from the interplay between gate voltage and topological gaps. Furthermore, the quantized conductance remains robust against strong disorder, suggesting the unique advantage of topological states for electronic transport. This work not only provides fundamental insights into the electronic properties of topological insulator nanostructures, but also sheds light on the potential applications of exotic states for quantum devices compatible with semiconductor technology.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1367-2630/ad2a82</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1390-372X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1367-2630
ispartof New journal of physics, 2024-02, Vol.26 (2), p.23059
issn 1367-2630
1367-2630
language eng
recordid cdi_iop_journals_10_1088_1367_2630_ad2a82
source Publicly Available Content Database
subjects Electric potential
Electron spin
Electron transport
electronic structure
Electrons
Energy gap
epitaxial growth
First principles
Graphene
Hexagonal lattice
Hierarchies
Nanoelectronics
Nanoribbons
Physics
Quantum confinement
quantum spin Hall insulator
Quantum transport
semiconductor substrate
Spectrum analysis
Subgroups
Substrates
Topological insulators
Transport properties
Voltage
title Nanoribbons of large-gap quantum spin Hall insulator: electronic structures and transport properties
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T16%3A45%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanoribbons%20of%20large-gap%20quantum%20spin%20Hall%20insulator:%20electronic%20structures%20and%20transport%20properties&rft.jtitle=New%20journal%20of%20physics&rft.au=Wu,%20Meimei&rft.date=2024-02-01&rft.volume=26&rft.issue=2&rft.spage=23059&rft.pages=23059-&rft.issn=1367-2630&rft.eissn=1367-2630&rft.coden=NJOPFM&rft_id=info:doi/10.1088/1367-2630/ad2a82&rft_dat=%3Cproquest_iop_j%3E2933814276%3C/proquest_iop_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c401t-c3a747240c3fbaf6cbd2fb553e8b04ec806ce5adaeda4d953e1a88bc307dc2503%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2933814276&rft_id=info:pmid/&rfr_iscdi=true