Loading…
Quantum tricriticality in a generalized quantum Rabi system
Quantum tricriticality, a unique form of high-order criticality, is expected to exhibit fascinating features including unconventional critical exponents and universal scaling laws. However, a quantum tricritical point (QTCP) is much harder to access, and the corresponding phenomena at tricriticality...
Saved in:
Published in: | New journal of physics 2024-06, Vol.26 (6), p.063010 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Quantum tricriticality, a unique form of high-order criticality, is expected to exhibit fascinating features including unconventional critical exponents and universal scaling laws. However, a quantum tricritical point (QTCP) is much harder to access, and the corresponding phenomena at tricriticality have rarely been investigated. In this study, we explore a tricritical quantum Rabi model, which incorporates a non-trivial parameter to adjust the coupling ratio between a cavity and a three-level atom. The QTCP emerges at the intersection of first- and second-order superradiant phase transitions according to Landau theory. By using finite-frequency scaling analysis on quantum fluctuations and the average photon number, universal critical exponents differentiate the QTCP from the second-order critical point. Our results indicate that the phase transition at the tricritical point goes beyond the conventional second-order phase transition. Our work explores an interesting direction in the generalization of the well-known Rabi model for the study of higher-order critical points due to its high control and tunability. |
---|---|
ISSN: | 1367-2630 1367-2630 |
DOI: | 10.1088/1367-2630/ad503c |