Loading…

A first-principles study of the electronic, mechanical, vibrational, and optical properties of the zirconium carbide under high pressure

Zirconium carbide is a compound widely used in cutting tools, nuclear reactors, field emitter arrays and solar energy receivers; additionally, combined with other materials, it can be used in rocket technology and the aerospace industry. For this work was studied the effect of the high hydrostatic p...

Full description

Saved in:
Bibliographic Details
Published in:Physica scripta 2023-02, Vol.98 (2), p.25817
Main Authors: Muñoz, H, Antonio, J E, Cervantes, J M, Romero, M, Rosas-Huerta, J L, Arévalo-López, E P, Carvajal, E, Escamilla, R
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c353t-c91ee784f89adfcd0b3b670dca404ac5a8fcc4185c45667cc140e514c68bc3a23
cites cdi_FETCH-LOGICAL-c353t-c91ee784f89adfcd0b3b670dca404ac5a8fcc4185c45667cc140e514c68bc3a23
container_end_page
container_issue 2
container_start_page 25817
container_title Physica scripta
container_volume 98
creator Muñoz, H
Antonio, J E
Cervantes, J M
Romero, M
Rosas-Huerta, J L
Arévalo-López, E P
Carvajal, E
Escamilla, R
description Zirconium carbide is a compound widely used in cutting tools, nuclear reactors, field emitter arrays and solar energy receivers; additionally, combined with other materials, it can be used in rocket technology and the aerospace industry. For this work was studied the effect of the high hydrostatic pressure on the electronic, mechanical, vibrational, and optical properties of the ZrC, from first principles calculations based on the Density Functional Theory. The calculated enthalpy and cohesive energy data show a B1 (NaCl) to B2 (CsCl) phase transition at 297 GPa. For the B1 phase, results for the calculated equilibrium lattice parameters, bands structure, electron and phonon densities of states, elastic moduli constants, entropy, enthalpy, Gibbs free energy, heat capacity, reflectivity, loss function, conductivity, and dielectric function are consistent with the available experimental and theoretical data. Our results for phonons show that the B1 phase is dynamically stable; in contrast, the B2 phase is not stable. Furthermore, when pressure is applied, the calculated density of electronic states shows that the C 2p -orbitals around the Fermi energy contribute significantly to the conduction band, turning the compound into a ductile the material, with a mixture of metallic and ionic-covalent bonds. On the other hand, the study of the mechanical properties of the B1 phase shows a highest mechanical resistance and maximum thermal absorption, above 356 K and 638 K, respectively; but these switch to higher temperatures as pressure is applied. Finally, the B1 phase of the ZrC is a good coating material and a photon detector at low frequencies in the UV region, but also at the visible and infrared regions; although, increasing the pressure, the values of the optical properties increase. The increase of the parameters’ values of the studied properties, as the pressure increases, indicates that the ZrC could be more efficient in a wider range of applications.
doi_str_mv 10.1088/1402-4896/acb326
format article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_iop_journals_10_1088_1402_4896_acb326</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>psacb326</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-c91ee784f89adfcd0b3b670dca404ac5a8fcc4185c45667cc140e514c68bc3a23</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EEqWwM3piaqidOK4zVhVfUiUWmC3n7BBXaRzZDlL5BfxsHLVigsnnu_ce6R6Ebim5p0SIJWUkz5io-FJBXeT8DM1-W-doRkhBM1Gx6hJdhbAjJOc5r2boe40b60PMBm97sENnAg5x1AfsGhxbg01nIHrXW1jgvYFWpUp1C_xpa6-idf30Ub3GbojTBA_eDcZHm0AnxJf1kADjHoPytdUGj702Hrf2o01xE8LozTW6aFQXzM3pnaP3x4e3zXO2fX162ay3GRRlETOoqDErwRpRKd2AJnVR8xXRoBhhCkolGgBGRQms5HwFkCSYkjLgooZC5cUckSMXvAvBm0amy_fKHyQlcjIpJ21y0iaPJtPK3XHFukHu3OjTzUEOQVZC5pLkpaArOegmBRd_BP_l_gCdSoVz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A first-principles study of the electronic, mechanical, vibrational, and optical properties of the zirconium carbide under high pressure</title><source>Institute of Physics</source><creator>Muñoz, H ; Antonio, J E ; Cervantes, J M ; Romero, M ; Rosas-Huerta, J L ; Arévalo-López, E P ; Carvajal, E ; Escamilla, R</creator><creatorcontrib>Muñoz, H ; Antonio, J E ; Cervantes, J M ; Romero, M ; Rosas-Huerta, J L ; Arévalo-López, E P ; Carvajal, E ; Escamilla, R</creatorcontrib><description>Zirconium carbide is a compound widely used in cutting tools, nuclear reactors, field emitter arrays and solar energy receivers; additionally, combined with other materials, it can be used in rocket technology and the aerospace industry. For this work was studied the effect of the high hydrostatic pressure on the electronic, mechanical, vibrational, and optical properties of the ZrC, from first principles calculations based on the Density Functional Theory. The calculated enthalpy and cohesive energy data show a B1 (NaCl) to B2 (CsCl) phase transition at 297 GPa. For the B1 phase, results for the calculated equilibrium lattice parameters, bands structure, electron and phonon densities of states, elastic moduli constants, entropy, enthalpy, Gibbs free energy, heat capacity, reflectivity, loss function, conductivity, and dielectric function are consistent with the available experimental and theoretical data. Our results for phonons show that the B1 phase is dynamically stable; in contrast, the B2 phase is not stable. Furthermore, when pressure is applied, the calculated density of electronic states shows that the C 2p -orbitals around the Fermi energy contribute significantly to the conduction band, turning the compound into a ductile the material, with a mixture of metallic and ionic-covalent bonds. On the other hand, the study of the mechanical properties of the B1 phase shows a highest mechanical resistance and maximum thermal absorption, above 356 K and 638 K, respectively; but these switch to higher temperatures as pressure is applied. Finally, the B1 phase of the ZrC is a good coating material and a photon detector at low frequencies in the UV region, but also at the visible and infrared regions; although, increasing the pressure, the values of the optical properties increase. The increase of the parameters’ values of the studied properties, as the pressure increases, indicates that the ZrC could be more efficient in a wider range of applications.</description><identifier>ISSN: 0031-8949</identifier><identifier>EISSN: 1402-4896</identifier><identifier>DOI: 10.1088/1402-4896/acb326</identifier><identifier>CODEN: PHSTBO</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>DFT ; high pressure ; optical ; phase transition ; phonons ; zirconium carbide</subject><ispartof>Physica scripta, 2023-02, Vol.98 (2), p.25817</ispartof><rights>2023 The Author(s). Published by IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-c91ee784f89adfcd0b3b670dca404ac5a8fcc4185c45667cc140e514c68bc3a23</citedby><cites>FETCH-LOGICAL-c353t-c91ee784f89adfcd0b3b670dca404ac5a8fcc4185c45667cc140e514c68bc3a23</cites><orcidid>0000-0003-3714-1774 ; 0000-0002-6876-0351 ; 0000-0002-8870-0313 ; 0000-0003-3363-757X ; 0000-0001-8213-1466 ; 0000-0001-5513-2623 ; 0000-0001-5107-3400 ; 0000-0001-8136-3521</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Muñoz, H</creatorcontrib><creatorcontrib>Antonio, J E</creatorcontrib><creatorcontrib>Cervantes, J M</creatorcontrib><creatorcontrib>Romero, M</creatorcontrib><creatorcontrib>Rosas-Huerta, J L</creatorcontrib><creatorcontrib>Arévalo-López, E P</creatorcontrib><creatorcontrib>Carvajal, E</creatorcontrib><creatorcontrib>Escamilla, R</creatorcontrib><title>A first-principles study of the electronic, mechanical, vibrational, and optical properties of the zirconium carbide under high pressure</title><title>Physica scripta</title><addtitle>PS</addtitle><addtitle>Phys. Scr</addtitle><description>Zirconium carbide is a compound widely used in cutting tools, nuclear reactors, field emitter arrays and solar energy receivers; additionally, combined with other materials, it can be used in rocket technology and the aerospace industry. For this work was studied the effect of the high hydrostatic pressure on the electronic, mechanical, vibrational, and optical properties of the ZrC, from first principles calculations based on the Density Functional Theory. The calculated enthalpy and cohesive energy data show a B1 (NaCl) to B2 (CsCl) phase transition at 297 GPa. For the B1 phase, results for the calculated equilibrium lattice parameters, bands structure, electron and phonon densities of states, elastic moduli constants, entropy, enthalpy, Gibbs free energy, heat capacity, reflectivity, loss function, conductivity, and dielectric function are consistent with the available experimental and theoretical data. Our results for phonons show that the B1 phase is dynamically stable; in contrast, the B2 phase is not stable. Furthermore, when pressure is applied, the calculated density of electronic states shows that the C 2p -orbitals around the Fermi energy contribute significantly to the conduction band, turning the compound into a ductile the material, with a mixture of metallic and ionic-covalent bonds. On the other hand, the study of the mechanical properties of the B1 phase shows a highest mechanical resistance and maximum thermal absorption, above 356 K and 638 K, respectively; but these switch to higher temperatures as pressure is applied. Finally, the B1 phase of the ZrC is a good coating material and a photon detector at low frequencies in the UV region, but also at the visible and infrared regions; although, increasing the pressure, the values of the optical properties increase. The increase of the parameters’ values of the studied properties, as the pressure increases, indicates that the ZrC could be more efficient in a wider range of applications.</description><subject>DFT</subject><subject>high pressure</subject><subject>optical</subject><subject>phase transition</subject><subject>phonons</subject><subject>zirconium carbide</subject><issn>0031-8949</issn><issn>1402-4896</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAQhi0EEqWwM3piaqidOK4zVhVfUiUWmC3n7BBXaRzZDlL5BfxsHLVigsnnu_ce6R6Ebim5p0SIJWUkz5io-FJBXeT8DM1-W-doRkhBM1Gx6hJdhbAjJOc5r2boe40b60PMBm97sENnAg5x1AfsGhxbg01nIHrXW1jgvYFWpUp1C_xpa6-idf30Ub3GbojTBA_eDcZHm0AnxJf1kADjHoPytdUGj702Hrf2o01xE8LozTW6aFQXzM3pnaP3x4e3zXO2fX162ay3GRRlETOoqDErwRpRKd2AJnVR8xXRoBhhCkolGgBGRQms5HwFkCSYkjLgooZC5cUckSMXvAvBm0amy_fKHyQlcjIpJ21y0iaPJtPK3XHFukHu3OjTzUEOQVZC5pLkpaArOegmBRd_BP_l_gCdSoVz</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Muñoz, H</creator><creator>Antonio, J E</creator><creator>Cervantes, J M</creator><creator>Romero, M</creator><creator>Rosas-Huerta, J L</creator><creator>Arévalo-López, E P</creator><creator>Carvajal, E</creator><creator>Escamilla, R</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3714-1774</orcidid><orcidid>https://orcid.org/0000-0002-6876-0351</orcidid><orcidid>https://orcid.org/0000-0002-8870-0313</orcidid><orcidid>https://orcid.org/0000-0003-3363-757X</orcidid><orcidid>https://orcid.org/0000-0001-8213-1466</orcidid><orcidid>https://orcid.org/0000-0001-5513-2623</orcidid><orcidid>https://orcid.org/0000-0001-5107-3400</orcidid><orcidid>https://orcid.org/0000-0001-8136-3521</orcidid></search><sort><creationdate>20230201</creationdate><title>A first-principles study of the electronic, mechanical, vibrational, and optical properties of the zirconium carbide under high pressure</title><author>Muñoz, H ; Antonio, J E ; Cervantes, J M ; Romero, M ; Rosas-Huerta, J L ; Arévalo-López, E P ; Carvajal, E ; Escamilla, R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-c91ee784f89adfcd0b3b670dca404ac5a8fcc4185c45667cc140e514c68bc3a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>DFT</topic><topic>high pressure</topic><topic>optical</topic><topic>phase transition</topic><topic>phonons</topic><topic>zirconium carbide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Muñoz, H</creatorcontrib><creatorcontrib>Antonio, J E</creatorcontrib><creatorcontrib>Cervantes, J M</creatorcontrib><creatorcontrib>Romero, M</creatorcontrib><creatorcontrib>Rosas-Huerta, J L</creatorcontrib><creatorcontrib>Arévalo-López, E P</creatorcontrib><creatorcontrib>Carvajal, E</creatorcontrib><creatorcontrib>Escamilla, R</creatorcontrib><collection>Open Access: IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><jtitle>Physica scripta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Muñoz, H</au><au>Antonio, J E</au><au>Cervantes, J M</au><au>Romero, M</au><au>Rosas-Huerta, J L</au><au>Arévalo-López, E P</au><au>Carvajal, E</au><au>Escamilla, R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A first-principles study of the electronic, mechanical, vibrational, and optical properties of the zirconium carbide under high pressure</atitle><jtitle>Physica scripta</jtitle><stitle>PS</stitle><addtitle>Phys. Scr</addtitle><date>2023-02-01</date><risdate>2023</risdate><volume>98</volume><issue>2</issue><spage>25817</spage><pages>25817-</pages><issn>0031-8949</issn><eissn>1402-4896</eissn><coden>PHSTBO</coden><abstract>Zirconium carbide is a compound widely used in cutting tools, nuclear reactors, field emitter arrays and solar energy receivers; additionally, combined with other materials, it can be used in rocket technology and the aerospace industry. For this work was studied the effect of the high hydrostatic pressure on the electronic, mechanical, vibrational, and optical properties of the ZrC, from first principles calculations based on the Density Functional Theory. The calculated enthalpy and cohesive energy data show a B1 (NaCl) to B2 (CsCl) phase transition at 297 GPa. For the B1 phase, results for the calculated equilibrium lattice parameters, bands structure, electron and phonon densities of states, elastic moduli constants, entropy, enthalpy, Gibbs free energy, heat capacity, reflectivity, loss function, conductivity, and dielectric function are consistent with the available experimental and theoretical data. Our results for phonons show that the B1 phase is dynamically stable; in contrast, the B2 phase is not stable. Furthermore, when pressure is applied, the calculated density of electronic states shows that the C 2p -orbitals around the Fermi energy contribute significantly to the conduction band, turning the compound into a ductile the material, with a mixture of metallic and ionic-covalent bonds. On the other hand, the study of the mechanical properties of the B1 phase shows a highest mechanical resistance and maximum thermal absorption, above 356 K and 638 K, respectively; but these switch to higher temperatures as pressure is applied. Finally, the B1 phase of the ZrC is a good coating material and a photon detector at low frequencies in the UV region, but also at the visible and infrared regions; although, increasing the pressure, the values of the optical properties increase. The increase of the parameters’ values of the studied properties, as the pressure increases, indicates that the ZrC could be more efficient in a wider range of applications.</abstract><pub>IOP Publishing</pub><doi>10.1088/1402-4896/acb326</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-3714-1774</orcidid><orcidid>https://orcid.org/0000-0002-6876-0351</orcidid><orcidid>https://orcid.org/0000-0002-8870-0313</orcidid><orcidid>https://orcid.org/0000-0003-3363-757X</orcidid><orcidid>https://orcid.org/0000-0001-8213-1466</orcidid><orcidid>https://orcid.org/0000-0001-5513-2623</orcidid><orcidid>https://orcid.org/0000-0001-5107-3400</orcidid><orcidid>https://orcid.org/0000-0001-8136-3521</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-8949
ispartof Physica scripta, 2023-02, Vol.98 (2), p.25817
issn 0031-8949
1402-4896
language eng
recordid cdi_iop_journals_10_1088_1402_4896_acb326
source Institute of Physics
subjects DFT
high pressure
optical
phase transition
phonons
zirconium carbide
title A first-principles study of the electronic, mechanical, vibrational, and optical properties of the zirconium carbide under high pressure
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T17%3A14%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20first-principles%20study%20of%20the%20electronic,%20mechanical,%20vibrational,%20and%20optical%20properties%20of%20the%20zirconium%20carbide%20under%20high%20pressure&rft.jtitle=Physica%20scripta&rft.au=Mu%C3%B1oz,%20H&rft.date=2023-02-01&rft.volume=98&rft.issue=2&rft.spage=25817&rft.pages=25817-&rft.issn=0031-8949&rft.eissn=1402-4896&rft.coden=PHSTBO&rft_id=info:doi/10.1088/1402-4896/acb326&rft_dat=%3Ciop_cross%3Epsacb326%3C/iop_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c353t-c91ee784f89adfcd0b3b670dca404ac5a8fcc4185c45667cc140e514c68bc3a23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true