Loading…
Cosmology from the kinetic polarized Sunyaev Zel'dovich effect
The cosmic microwave background (CMB) photons that scatter off free electrons in the large-scale structure induce a linear polarization pattern proportional to the remote CMB temperature quadrupole observed in the electrons' rest frame. The associated blackbody polarization anisotropies are kno...
Saved in:
Published in: | Journal of cosmology and astroparticle physics 2022-10, Vol.2022 (10), p.26 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The cosmic microwave background (CMB) photons that scatter off free electrons in the large-scale structure induce a linear polarization pattern proportional to the remote CMB temperature quadrupole observed in the electrons' rest frame. The associated blackbody polarization anisotropies are known as the polarized Sunyaev Zel'dovich (pSZ) effect. Relativistic corrections to the remote quadrupole field give rise to a non-blackbody polarization anisotropy proportional to the square of the transverse peculiar velocity field; this is the kinetic polarized Sunyaev Zel'dovich (kpSZ) effect. In this paper, we forecast the ability of future CMB and galaxy surveys to detect the kpSZ effect, finding that a statistically significant detection is within the reach of planned experiments. We further introduce a quadratic estimator for the square of the peculiar velocity field based on a galaxy survey and CMB polarization. Finally, we outline how the kpSZ effect is a probe of cosmic birefringence and primordial non-Gaussianity, forecasting the reach of future experiments. |
---|---|
ISSN: | 1475-7516 1475-7516 |
DOI: | 10.1088/1475-7516/2022/10/026 |