Loading…
Instrumental Response Model and Detrending for the Dark Energy Camera
We describe the model for mapping from sky brightness to the digital output of the Dark Energy Camera (DECam) and the algorithms adopted by the Dark Energy Survey (DES) for inverting this model to obtain photometric measures of celestial objects from the raw camera output. This calibration aims for...
Saved in:
Published in: | Publications of the Astronomical Society of the Pacific 2017-11, Vol.129 (981), p.114502 |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c377t-1419e51c4907ba14bb364e82755412877de094537241466aa3750261cb6e91943 |
---|---|
cites | cdi_FETCH-LOGICAL-c377t-1419e51c4907ba14bb364e82755412877de094537241466aa3750261cb6e91943 |
container_end_page | |
container_issue | 981 |
container_start_page | 114502 |
container_title | Publications of the Astronomical Society of the Pacific |
container_volume | 129 |
creator | Bernstein, G. M. Abbott, T. M. C. Desai, S. Gruen, D. Gruendl, R. A. Johnson, M. D. Lin, H. Menanteau, F. Morganson, E. Neilsen, E. Paech, K. Walker, A. R. Wester, W. Yanny, B. |
description | We describe the model for mapping from sky brightness to the digital output of the Dark Energy Camera (DECam) and the algorithms adopted by the Dark Energy Survey (DES) for inverting this model to obtain photometric measures of celestial objects from the raw camera output. This calibration aims for fluxes that are uniform across the camera field of view and across the full angular and temporal span of the DES observations, approaching the accuracy limits set by shot noise for the full dynamic range of DES observations. The DES pipeline incorporates several substantive advances over standard detrending techniques, including principal-components-based sky and fringe subtraction; correction of the "brighter-fatter" nonlinearity; use of internal consistency in on-sky observations to disentangle the influences of quantum efficiency, pixel-size variations, and scattered light in the dome flats; and pixel-by-pixel characterization of instrument spectral response, through combination of internal-consistency constraints with auxiliary calibration data. This article provides conceptual derivations of the detrending/calibration steps, and the procedures for obtaining the necessary calibration data. Other publications will describe the implementation of these concepts for the DES operational pipeline, the detailed methods, and the validation that the techniques can bring DECam photometry and astrometry within 2 mmag and 3 mas, respectively, of fundamental atmospheric and statistical limits. The DES techniques should be broadly applicable to wide-field imagers. |
doi_str_mv | 10.1088/1538-3873/aa858e |
format | article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_iop_journals_10_1088_1538_3873_aa858e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1994343169</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-1419e51c4907ba14bb364e82755412877de094537241466aa3750261cb6e91943</originalsourceid><addsrcrecordid>eNp1kMFKAzEQQIMoWKt3j0Gvrs1sskn2KG3VQkUQPYfs7rTd2iY1SQ_9e7esiBdPA8Obx_AIuQZ2D0zrERRcZ1wrPrJWFxpPyOB3dUoGjDGRyVyzc3IR45oxAA1sQKYzF1PYb9Elu6FvGHfeRaQvvsENta6hE0wBXdO6JV34QNMK6cSGTzp1GJYHOrZbDPaSnC3sJuLVzxySj8fp-_g5m78-zcYP86zmSqUMBJRYQC1KpioLoqq4FKhzVRQCcq1Ug6wUBVe5ACGltVwVLJdQVxJLKAUfkpve62NqTazbhPWq9s5hnUxnZ5LxDrrtoV3wX3uMyaz9PrjuLwNlJxEcZNlRrKfq4GMMuDC70G5tOBhg5ljUHPOZYz7TF-1O7vqT1u_-OP_DvwHxZXOW</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1994343169</pqid></control><display><type>article</type><title>Instrumental Response Model and Detrending for the Dark Energy Camera</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Bernstein, G. M. ; Abbott, T. M. C. ; Desai, S. ; Gruen, D. ; Gruendl, R. A. ; Johnson, M. D. ; Lin, H. ; Menanteau, F. ; Morganson, E. ; Neilsen, E. ; Paech, K. ; Walker, A. R. ; Wester, W. ; Yanny, B.</creator><creatorcontrib>Bernstein, G. M. ; Abbott, T. M. C. ; Desai, S. ; Gruen, D. ; Gruendl, R. A. ; Johnson, M. D. ; Lin, H. ; Menanteau, F. ; Morganson, E. ; Neilsen, E. ; Paech, K. ; Walker, A. R. ; Wester, W. ; Yanny, B. ; DES Collaboration ; SLAC National Accelerator Lab., Menlo Park, CA (United States)</creatorcontrib><description>We describe the model for mapping from sky brightness to the digital output of the Dark Energy Camera (DECam) and the algorithms adopted by the Dark Energy Survey (DES) for inverting this model to obtain photometric measures of celestial objects from the raw camera output. This calibration aims for fluxes that are uniform across the camera field of view and across the full angular and temporal span of the DES observations, approaching the accuracy limits set by shot noise for the full dynamic range of DES observations. The DES pipeline incorporates several substantive advances over standard detrending techniques, including principal-components-based sky and fringe subtraction; correction of the "brighter-fatter" nonlinearity; use of internal consistency in on-sky observations to disentangle the influences of quantum efficiency, pixel-size variations, and scattered light in the dome flats; and pixel-by-pixel characterization of instrument spectral response, through combination of internal-consistency constraints with auxiliary calibration data. This article provides conceptual derivations of the detrending/calibration steps, and the procedures for obtaining the necessary calibration data. Other publications will describe the implementation of these concepts for the DES operational pipeline, the detailed methods, and the validation that the techniques can bring DECam photometry and astrometry within 2 mmag and 3 mas, respectively, of fundamental atmospheric and statistical limits. The DES techniques should be broadly applicable to wide-field imagers.</description><identifier>ISSN: 0004-6280</identifier><identifier>EISSN: 1538-3873</identifier><identifier>DOI: 10.1088/1538-3873/aa858e</identifier><language>eng</language><publisher>Philadelphia: The Astronomical Society of the Pacific</publisher><subject>Algorithms ; ASTRONOMY AND ASTROPHYSICS ; Calibration ; Dark energy ; methods: data analysis ; Photometry ; Sky brightness ; techniques: photometric</subject><ispartof>Publications of the Astronomical Society of the Pacific, 2017-11, Vol.129 (981), p.114502</ispartof><rights>2017. The Astronomical Society of the Pacific. All rights reserved.</rights><rights>Copyright University of Chicago Press Nov 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-1419e51c4907ba14bb364e82755412877de094537241466aa3750261cb6e91943</citedby><cites>FETCH-LOGICAL-c377t-1419e51c4907ba14bb364e82755412877de094537241466aa3750261cb6e91943</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1410603$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Bernstein, G. M.</creatorcontrib><creatorcontrib>Abbott, T. M. C.</creatorcontrib><creatorcontrib>Desai, S.</creatorcontrib><creatorcontrib>Gruen, D.</creatorcontrib><creatorcontrib>Gruendl, R. A.</creatorcontrib><creatorcontrib>Johnson, M. D.</creatorcontrib><creatorcontrib>Lin, H.</creatorcontrib><creatorcontrib>Menanteau, F.</creatorcontrib><creatorcontrib>Morganson, E.</creatorcontrib><creatorcontrib>Neilsen, E.</creatorcontrib><creatorcontrib>Paech, K.</creatorcontrib><creatorcontrib>Walker, A. R.</creatorcontrib><creatorcontrib>Wester, W.</creatorcontrib><creatorcontrib>Yanny, B.</creatorcontrib><creatorcontrib>DES Collaboration</creatorcontrib><creatorcontrib>SLAC National Accelerator Lab., Menlo Park, CA (United States)</creatorcontrib><title>Instrumental Response Model and Detrending for the Dark Energy Camera</title><title>Publications of the Astronomical Society of the Pacific</title><addtitle>Publ. Astron. Soc. Pac</addtitle><description>We describe the model for mapping from sky brightness to the digital output of the Dark Energy Camera (DECam) and the algorithms adopted by the Dark Energy Survey (DES) for inverting this model to obtain photometric measures of celestial objects from the raw camera output. This calibration aims for fluxes that are uniform across the camera field of view and across the full angular and temporal span of the DES observations, approaching the accuracy limits set by shot noise for the full dynamic range of DES observations. The DES pipeline incorporates several substantive advances over standard detrending techniques, including principal-components-based sky and fringe subtraction; correction of the "brighter-fatter" nonlinearity; use of internal consistency in on-sky observations to disentangle the influences of quantum efficiency, pixel-size variations, and scattered light in the dome flats; and pixel-by-pixel characterization of instrument spectral response, through combination of internal-consistency constraints with auxiliary calibration data. This article provides conceptual derivations of the detrending/calibration steps, and the procedures for obtaining the necessary calibration data. Other publications will describe the implementation of these concepts for the DES operational pipeline, the detailed methods, and the validation that the techniques can bring DECam photometry and astrometry within 2 mmag and 3 mas, respectively, of fundamental atmospheric and statistical limits. The DES techniques should be broadly applicable to wide-field imagers.</description><subject>Algorithms</subject><subject>ASTRONOMY AND ASTROPHYSICS</subject><subject>Calibration</subject><subject>Dark energy</subject><subject>methods: data analysis</subject><subject>Photometry</subject><subject>Sky brightness</subject><subject>techniques: photometric</subject><issn>0004-6280</issn><issn>1538-3873</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kMFKAzEQQIMoWKt3j0Gvrs1sskn2KG3VQkUQPYfs7rTd2iY1SQ_9e7esiBdPA8Obx_AIuQZ2D0zrERRcZ1wrPrJWFxpPyOB3dUoGjDGRyVyzc3IR45oxAA1sQKYzF1PYb9Elu6FvGHfeRaQvvsENta6hE0wBXdO6JV34QNMK6cSGTzp1GJYHOrZbDPaSnC3sJuLVzxySj8fp-_g5m78-zcYP86zmSqUMBJRYQC1KpioLoqq4FKhzVRQCcq1Ug6wUBVe5ACGltVwVLJdQVxJLKAUfkpve62NqTazbhPWq9s5hnUxnZ5LxDrrtoV3wX3uMyaz9PrjuLwNlJxEcZNlRrKfq4GMMuDC70G5tOBhg5ljUHPOZYz7TF-1O7vqT1u_-OP_DvwHxZXOW</recordid><startdate>20171101</startdate><enddate>20171101</enddate><creator>Bernstein, G. M.</creator><creator>Abbott, T. M. C.</creator><creator>Desai, S.</creator><creator>Gruen, D.</creator><creator>Gruendl, R. A.</creator><creator>Johnson, M. D.</creator><creator>Lin, H.</creator><creator>Menanteau, F.</creator><creator>Morganson, E.</creator><creator>Neilsen, E.</creator><creator>Paech, K.</creator><creator>Walker, A. R.</creator><creator>Wester, W.</creator><creator>Yanny, B.</creator><general>The Astronomical Society of the Pacific</general><general>IOP Publishing</general><general>Astronomical Society of the Pacific</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20171101</creationdate><title>Instrumental Response Model and Detrending for the Dark Energy Camera</title><author>Bernstein, G. M. ; Abbott, T. M. C. ; Desai, S. ; Gruen, D. ; Gruendl, R. A. ; Johnson, M. D. ; Lin, H. ; Menanteau, F. ; Morganson, E. ; Neilsen, E. ; Paech, K. ; Walker, A. R. ; Wester, W. ; Yanny, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-1419e51c4907ba14bb364e82755412877de094537241466aa3750261cb6e91943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>ASTRONOMY AND ASTROPHYSICS</topic><topic>Calibration</topic><topic>Dark energy</topic><topic>methods: data analysis</topic><topic>Photometry</topic><topic>Sky brightness</topic><topic>techniques: photometric</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bernstein, G. M.</creatorcontrib><creatorcontrib>Abbott, T. M. C.</creatorcontrib><creatorcontrib>Desai, S.</creatorcontrib><creatorcontrib>Gruen, D.</creatorcontrib><creatorcontrib>Gruendl, R. A.</creatorcontrib><creatorcontrib>Johnson, M. D.</creatorcontrib><creatorcontrib>Lin, H.</creatorcontrib><creatorcontrib>Menanteau, F.</creatorcontrib><creatorcontrib>Morganson, E.</creatorcontrib><creatorcontrib>Neilsen, E.</creatorcontrib><creatorcontrib>Paech, K.</creatorcontrib><creatorcontrib>Walker, A. R.</creatorcontrib><creatorcontrib>Wester, W.</creatorcontrib><creatorcontrib>Yanny, B.</creatorcontrib><creatorcontrib>DES Collaboration</creatorcontrib><creatorcontrib>SLAC National Accelerator Lab., Menlo Park, CA (United States)</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Publications of the Astronomical Society of the Pacific</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bernstein, G. M.</au><au>Abbott, T. M. C.</au><au>Desai, S.</au><au>Gruen, D.</au><au>Gruendl, R. A.</au><au>Johnson, M. D.</au><au>Lin, H.</au><au>Menanteau, F.</au><au>Morganson, E.</au><au>Neilsen, E.</au><au>Paech, K.</au><au>Walker, A. R.</au><au>Wester, W.</au><au>Yanny, B.</au><aucorp>DES Collaboration</aucorp><aucorp>SLAC National Accelerator Lab., Menlo Park, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Instrumental Response Model and Detrending for the Dark Energy Camera</atitle><jtitle>Publications of the Astronomical Society of the Pacific</jtitle><addtitle>Publ. Astron. Soc. Pac</addtitle><date>2017-11-01</date><risdate>2017</risdate><volume>129</volume><issue>981</issue><spage>114502</spage><pages>114502-</pages><issn>0004-6280</issn><eissn>1538-3873</eissn><abstract>We describe the model for mapping from sky brightness to the digital output of the Dark Energy Camera (DECam) and the algorithms adopted by the Dark Energy Survey (DES) for inverting this model to obtain photometric measures of celestial objects from the raw camera output. This calibration aims for fluxes that are uniform across the camera field of view and across the full angular and temporal span of the DES observations, approaching the accuracy limits set by shot noise for the full dynamic range of DES observations. The DES pipeline incorporates several substantive advances over standard detrending techniques, including principal-components-based sky and fringe subtraction; correction of the "brighter-fatter" nonlinearity; use of internal consistency in on-sky observations to disentangle the influences of quantum efficiency, pixel-size variations, and scattered light in the dome flats; and pixel-by-pixel characterization of instrument spectral response, through combination of internal-consistency constraints with auxiliary calibration data. This article provides conceptual derivations of the detrending/calibration steps, and the procedures for obtaining the necessary calibration data. Other publications will describe the implementation of these concepts for the DES operational pipeline, the detailed methods, and the validation that the techniques can bring DECam photometry and astrometry within 2 mmag and 3 mas, respectively, of fundamental atmospheric and statistical limits. The DES techniques should be broadly applicable to wide-field imagers.</abstract><cop>Philadelphia</cop><pub>The Astronomical Society of the Pacific</pub><doi>10.1088/1538-3873/aa858e</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-6280 |
ispartof | Publications of the Astronomical Society of the Pacific, 2017-11, Vol.129 (981), p.114502 |
issn | 0004-6280 1538-3873 |
language | eng |
recordid | cdi_iop_journals_10_1088_1538_3873_aa858e |
source | JSTOR Archival Journals and Primary Sources Collection; Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List) |
subjects | Algorithms ASTRONOMY AND ASTROPHYSICS Calibration Dark energy methods: data analysis Photometry Sky brightness techniques: photometric |
title | Instrumental Response Model and Detrending for the Dark Energy Camera |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T14%3A18%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Instrumental%20Response%20Model%20and%20Detrending%20for%20the%20Dark%20Energy%20Camera&rft.jtitle=Publications%20of%20the%20Astronomical%20Society%20of%20the%20Pacific&rft.au=Bernstein,%20G.%20M.&rft.aucorp=DES%20Collaboration&rft.date=2017-11-01&rft.volume=129&rft.issue=981&rft.spage=114502&rft.pages=114502-&rft.issn=0004-6280&rft.eissn=1538-3873&rft_id=info:doi/10.1088/1538-3873/aa858e&rft_dat=%3Cproquest_iop_j%3E1994343169%3C/proquest_iop_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c377t-1419e51c4907ba14bb364e82755412877de094537241466aa3750261cb6e91943%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1994343169&rft_id=info:pmid/&rfr_iscdi=true |