Loading…

Instrumental Response Model and Detrending for the Dark Energy Camera

We describe the model for mapping from sky brightness to the digital output of the Dark Energy Camera (DECam) and the algorithms adopted by the Dark Energy Survey (DES) for inverting this model to obtain photometric measures of celestial objects from the raw camera output. This calibration aims for...

Full description

Saved in:
Bibliographic Details
Published in:Publications of the Astronomical Society of the Pacific 2017-11, Vol.129 (981), p.114502
Main Authors: Bernstein, G. M., Abbott, T. M. C., Desai, S., Gruen, D., Gruendl, R. A., Johnson, M. D., Lin, H., Menanteau, F., Morganson, E., Neilsen, E., Paech, K., Walker, A. R., Wester, W., Yanny, B.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c377t-1419e51c4907ba14bb364e82755412877de094537241466aa3750261cb6e91943
cites cdi_FETCH-LOGICAL-c377t-1419e51c4907ba14bb364e82755412877de094537241466aa3750261cb6e91943
container_end_page
container_issue 981
container_start_page 114502
container_title Publications of the Astronomical Society of the Pacific
container_volume 129
creator Bernstein, G. M.
Abbott, T. M. C.
Desai, S.
Gruen, D.
Gruendl, R. A.
Johnson, M. D.
Lin, H.
Menanteau, F.
Morganson, E.
Neilsen, E.
Paech, K.
Walker, A. R.
Wester, W.
Yanny, B.
description We describe the model for mapping from sky brightness to the digital output of the Dark Energy Camera (DECam) and the algorithms adopted by the Dark Energy Survey (DES) for inverting this model to obtain photometric measures of celestial objects from the raw camera output. This calibration aims for fluxes that are uniform across the camera field of view and across the full angular and temporal span of the DES observations, approaching the accuracy limits set by shot noise for the full dynamic range of DES observations. The DES pipeline incorporates several substantive advances over standard detrending techniques, including principal-components-based sky and fringe subtraction; correction of the "brighter-fatter" nonlinearity; use of internal consistency in on-sky observations to disentangle the influences of quantum efficiency, pixel-size variations, and scattered light in the dome flats; and pixel-by-pixel characterization of instrument spectral response, through combination of internal-consistency constraints with auxiliary calibration data. This article provides conceptual derivations of the detrending/calibration steps, and the procedures for obtaining the necessary calibration data. Other publications will describe the implementation of these concepts for the DES operational pipeline, the detailed methods, and the validation that the techniques can bring DECam photometry and astrometry within 2 mmag and 3 mas, respectively, of fundamental atmospheric and statistical limits. The DES techniques should be broadly applicable to wide-field imagers.
doi_str_mv 10.1088/1538-3873/aa858e
format article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_iop_journals_10_1088_1538_3873_aa858e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1994343169</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-1419e51c4907ba14bb364e82755412877de094537241466aa3750261cb6e91943</originalsourceid><addsrcrecordid>eNp1kMFKAzEQQIMoWKt3j0Gvrs1sskn2KG3VQkUQPYfs7rTd2iY1SQ_9e7esiBdPA8Obx_AIuQZ2D0zrERRcZ1wrPrJWFxpPyOB3dUoGjDGRyVyzc3IR45oxAA1sQKYzF1PYb9Elu6FvGHfeRaQvvsENta6hE0wBXdO6JV34QNMK6cSGTzp1GJYHOrZbDPaSnC3sJuLVzxySj8fp-_g5m78-zcYP86zmSqUMBJRYQC1KpioLoqq4FKhzVRQCcq1Ug6wUBVe5ACGltVwVLJdQVxJLKAUfkpve62NqTazbhPWq9s5hnUxnZ5LxDrrtoV3wX3uMyaz9PrjuLwNlJxEcZNlRrKfq4GMMuDC70G5tOBhg5ljUHPOZYz7TF-1O7vqT1u_-OP_DvwHxZXOW</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1994343169</pqid></control><display><type>article</type><title>Instrumental Response Model and Detrending for the Dark Energy Camera</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Bernstein, G. M. ; Abbott, T. M. C. ; Desai, S. ; Gruen, D. ; Gruendl, R. A. ; Johnson, M. D. ; Lin, H. ; Menanteau, F. ; Morganson, E. ; Neilsen, E. ; Paech, K. ; Walker, A. R. ; Wester, W. ; Yanny, B.</creator><creatorcontrib>Bernstein, G. M. ; Abbott, T. M. C. ; Desai, S. ; Gruen, D. ; Gruendl, R. A. ; Johnson, M. D. ; Lin, H. ; Menanteau, F. ; Morganson, E. ; Neilsen, E. ; Paech, K. ; Walker, A. R. ; Wester, W. ; Yanny, B. ; DES Collaboration ; SLAC National Accelerator Lab., Menlo Park, CA (United States)</creatorcontrib><description>We describe the model for mapping from sky brightness to the digital output of the Dark Energy Camera (DECam) and the algorithms adopted by the Dark Energy Survey (DES) for inverting this model to obtain photometric measures of celestial objects from the raw camera output. This calibration aims for fluxes that are uniform across the camera field of view and across the full angular and temporal span of the DES observations, approaching the accuracy limits set by shot noise for the full dynamic range of DES observations. The DES pipeline incorporates several substantive advances over standard detrending techniques, including principal-components-based sky and fringe subtraction; correction of the "brighter-fatter" nonlinearity; use of internal consistency in on-sky observations to disentangle the influences of quantum efficiency, pixel-size variations, and scattered light in the dome flats; and pixel-by-pixel characterization of instrument spectral response, through combination of internal-consistency constraints with auxiliary calibration data. This article provides conceptual derivations of the detrending/calibration steps, and the procedures for obtaining the necessary calibration data. Other publications will describe the implementation of these concepts for the DES operational pipeline, the detailed methods, and the validation that the techniques can bring DECam photometry and astrometry within 2 mmag and 3 mas, respectively, of fundamental atmospheric and statistical limits. The DES techniques should be broadly applicable to wide-field imagers.</description><identifier>ISSN: 0004-6280</identifier><identifier>EISSN: 1538-3873</identifier><identifier>DOI: 10.1088/1538-3873/aa858e</identifier><language>eng</language><publisher>Philadelphia: The Astronomical Society of the Pacific</publisher><subject>Algorithms ; ASTRONOMY AND ASTROPHYSICS ; Calibration ; Dark energy ; methods: data analysis ; Photometry ; Sky brightness ; techniques: photometric</subject><ispartof>Publications of the Astronomical Society of the Pacific, 2017-11, Vol.129 (981), p.114502</ispartof><rights>2017. The Astronomical Society of the Pacific. All rights reserved.</rights><rights>Copyright University of Chicago Press Nov 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-1419e51c4907ba14bb364e82755412877de094537241466aa3750261cb6e91943</citedby><cites>FETCH-LOGICAL-c377t-1419e51c4907ba14bb364e82755412877de094537241466aa3750261cb6e91943</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1410603$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Bernstein, G. M.</creatorcontrib><creatorcontrib>Abbott, T. M. C.</creatorcontrib><creatorcontrib>Desai, S.</creatorcontrib><creatorcontrib>Gruen, D.</creatorcontrib><creatorcontrib>Gruendl, R. A.</creatorcontrib><creatorcontrib>Johnson, M. D.</creatorcontrib><creatorcontrib>Lin, H.</creatorcontrib><creatorcontrib>Menanteau, F.</creatorcontrib><creatorcontrib>Morganson, E.</creatorcontrib><creatorcontrib>Neilsen, E.</creatorcontrib><creatorcontrib>Paech, K.</creatorcontrib><creatorcontrib>Walker, A. R.</creatorcontrib><creatorcontrib>Wester, W.</creatorcontrib><creatorcontrib>Yanny, B.</creatorcontrib><creatorcontrib>DES Collaboration</creatorcontrib><creatorcontrib>SLAC National Accelerator Lab., Menlo Park, CA (United States)</creatorcontrib><title>Instrumental Response Model and Detrending for the Dark Energy Camera</title><title>Publications of the Astronomical Society of the Pacific</title><addtitle>Publ. Astron. Soc. Pac</addtitle><description>We describe the model for mapping from sky brightness to the digital output of the Dark Energy Camera (DECam) and the algorithms adopted by the Dark Energy Survey (DES) for inverting this model to obtain photometric measures of celestial objects from the raw camera output. This calibration aims for fluxes that are uniform across the camera field of view and across the full angular and temporal span of the DES observations, approaching the accuracy limits set by shot noise for the full dynamic range of DES observations. The DES pipeline incorporates several substantive advances over standard detrending techniques, including principal-components-based sky and fringe subtraction; correction of the "brighter-fatter" nonlinearity; use of internal consistency in on-sky observations to disentangle the influences of quantum efficiency, pixel-size variations, and scattered light in the dome flats; and pixel-by-pixel characterization of instrument spectral response, through combination of internal-consistency constraints with auxiliary calibration data. This article provides conceptual derivations of the detrending/calibration steps, and the procedures for obtaining the necessary calibration data. Other publications will describe the implementation of these concepts for the DES operational pipeline, the detailed methods, and the validation that the techniques can bring DECam photometry and astrometry within 2 mmag and 3 mas, respectively, of fundamental atmospheric and statistical limits. The DES techniques should be broadly applicable to wide-field imagers.</description><subject>Algorithms</subject><subject>ASTRONOMY AND ASTROPHYSICS</subject><subject>Calibration</subject><subject>Dark energy</subject><subject>methods: data analysis</subject><subject>Photometry</subject><subject>Sky brightness</subject><subject>techniques: photometric</subject><issn>0004-6280</issn><issn>1538-3873</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kMFKAzEQQIMoWKt3j0Gvrs1sskn2KG3VQkUQPYfs7rTd2iY1SQ_9e7esiBdPA8Obx_AIuQZ2D0zrERRcZ1wrPrJWFxpPyOB3dUoGjDGRyVyzc3IR45oxAA1sQKYzF1PYb9Elu6FvGHfeRaQvvsENta6hE0wBXdO6JV34QNMK6cSGTzp1GJYHOrZbDPaSnC3sJuLVzxySj8fp-_g5m78-zcYP86zmSqUMBJRYQC1KpioLoqq4FKhzVRQCcq1Ug6wUBVe5ACGltVwVLJdQVxJLKAUfkpve62NqTazbhPWq9s5hnUxnZ5LxDrrtoV3wX3uMyaz9PrjuLwNlJxEcZNlRrKfq4GMMuDC70G5tOBhg5ljUHPOZYz7TF-1O7vqT1u_-OP_DvwHxZXOW</recordid><startdate>20171101</startdate><enddate>20171101</enddate><creator>Bernstein, G. M.</creator><creator>Abbott, T. M. C.</creator><creator>Desai, S.</creator><creator>Gruen, D.</creator><creator>Gruendl, R. A.</creator><creator>Johnson, M. D.</creator><creator>Lin, H.</creator><creator>Menanteau, F.</creator><creator>Morganson, E.</creator><creator>Neilsen, E.</creator><creator>Paech, K.</creator><creator>Walker, A. R.</creator><creator>Wester, W.</creator><creator>Yanny, B.</creator><general>The Astronomical Society of the Pacific</general><general>IOP Publishing</general><general>Astronomical Society of the Pacific</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20171101</creationdate><title>Instrumental Response Model and Detrending for the Dark Energy Camera</title><author>Bernstein, G. M. ; Abbott, T. M. C. ; Desai, S. ; Gruen, D. ; Gruendl, R. A. ; Johnson, M. D. ; Lin, H. ; Menanteau, F. ; Morganson, E. ; Neilsen, E. ; Paech, K. ; Walker, A. R. ; Wester, W. ; Yanny, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-1419e51c4907ba14bb364e82755412877de094537241466aa3750261cb6e91943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>ASTRONOMY AND ASTROPHYSICS</topic><topic>Calibration</topic><topic>Dark energy</topic><topic>methods: data analysis</topic><topic>Photometry</topic><topic>Sky brightness</topic><topic>techniques: photometric</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bernstein, G. M.</creatorcontrib><creatorcontrib>Abbott, T. M. C.</creatorcontrib><creatorcontrib>Desai, S.</creatorcontrib><creatorcontrib>Gruen, D.</creatorcontrib><creatorcontrib>Gruendl, R. A.</creatorcontrib><creatorcontrib>Johnson, M. D.</creatorcontrib><creatorcontrib>Lin, H.</creatorcontrib><creatorcontrib>Menanteau, F.</creatorcontrib><creatorcontrib>Morganson, E.</creatorcontrib><creatorcontrib>Neilsen, E.</creatorcontrib><creatorcontrib>Paech, K.</creatorcontrib><creatorcontrib>Walker, A. R.</creatorcontrib><creatorcontrib>Wester, W.</creatorcontrib><creatorcontrib>Yanny, B.</creatorcontrib><creatorcontrib>DES Collaboration</creatorcontrib><creatorcontrib>SLAC National Accelerator Lab., Menlo Park, CA (United States)</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Publications of the Astronomical Society of the Pacific</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bernstein, G. M.</au><au>Abbott, T. M. C.</au><au>Desai, S.</au><au>Gruen, D.</au><au>Gruendl, R. A.</au><au>Johnson, M. D.</au><au>Lin, H.</au><au>Menanteau, F.</au><au>Morganson, E.</au><au>Neilsen, E.</au><au>Paech, K.</au><au>Walker, A. R.</au><au>Wester, W.</au><au>Yanny, B.</au><aucorp>DES Collaboration</aucorp><aucorp>SLAC National Accelerator Lab., Menlo Park, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Instrumental Response Model and Detrending for the Dark Energy Camera</atitle><jtitle>Publications of the Astronomical Society of the Pacific</jtitle><addtitle>Publ. Astron. Soc. Pac</addtitle><date>2017-11-01</date><risdate>2017</risdate><volume>129</volume><issue>981</issue><spage>114502</spage><pages>114502-</pages><issn>0004-6280</issn><eissn>1538-3873</eissn><abstract>We describe the model for mapping from sky brightness to the digital output of the Dark Energy Camera (DECam) and the algorithms adopted by the Dark Energy Survey (DES) for inverting this model to obtain photometric measures of celestial objects from the raw camera output. This calibration aims for fluxes that are uniform across the camera field of view and across the full angular and temporal span of the DES observations, approaching the accuracy limits set by shot noise for the full dynamic range of DES observations. The DES pipeline incorporates several substantive advances over standard detrending techniques, including principal-components-based sky and fringe subtraction; correction of the "brighter-fatter" nonlinearity; use of internal consistency in on-sky observations to disentangle the influences of quantum efficiency, pixel-size variations, and scattered light in the dome flats; and pixel-by-pixel characterization of instrument spectral response, through combination of internal-consistency constraints with auxiliary calibration data. This article provides conceptual derivations of the detrending/calibration steps, and the procedures for obtaining the necessary calibration data. Other publications will describe the implementation of these concepts for the DES operational pipeline, the detailed methods, and the validation that the techniques can bring DECam photometry and astrometry within 2 mmag and 3 mas, respectively, of fundamental atmospheric and statistical limits. The DES techniques should be broadly applicable to wide-field imagers.</abstract><cop>Philadelphia</cop><pub>The Astronomical Society of the Pacific</pub><doi>10.1088/1538-3873/aa858e</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-6280
ispartof Publications of the Astronomical Society of the Pacific, 2017-11, Vol.129 (981), p.114502
issn 0004-6280
1538-3873
language eng
recordid cdi_iop_journals_10_1088_1538_3873_aa858e
source JSTOR Archival Journals and Primary Sources Collection; Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)
subjects Algorithms
ASTRONOMY AND ASTROPHYSICS
Calibration
Dark energy
methods: data analysis
Photometry
Sky brightness
techniques: photometric
title Instrumental Response Model and Detrending for the Dark Energy Camera
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T14%3A18%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Instrumental%20Response%20Model%20and%20Detrending%20for%20the%20Dark%20Energy%20Camera&rft.jtitle=Publications%20of%20the%20Astronomical%20Society%20of%20the%20Pacific&rft.au=Bernstein,%20G.%20M.&rft.aucorp=DES%20Collaboration&rft.date=2017-11-01&rft.volume=129&rft.issue=981&rft.spage=114502&rft.pages=114502-&rft.issn=0004-6280&rft.eissn=1538-3873&rft_id=info:doi/10.1088/1538-3873/aa858e&rft_dat=%3Cproquest_iop_j%3E1994343169%3C/proquest_iop_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c377t-1419e51c4907ba14bb364e82755412877de094537241466aa3750261cb6e91943%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1994343169&rft_id=info:pmid/&rfr_iscdi=true