Loading…
Interface effect on superlattice quality and optical properties of InAs/GaSb type-II superlattices grown by molecular beam epitaxy
We systematically investigate the influence of InSb interface (IF) engineering on the crystal quality and optical properties of strain-balanced InAs/GaSb type-II superlattices (T2SLs). The type-II superlattice structure is 120 periods InAs (8 ML)/GaSb (6 ML) with different thicknesses of InSb interf...
Saved in:
Published in: | Chinese physics B 2022-11, Vol.31 (12), p.128503-677 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We systematically investigate the influence of InSb interface (IF) engineering on the crystal quality and optical properties of strain-balanced InAs/GaSb type-II superlattices (T2SLs). The type-II superlattice structure is 120 periods InAs (8 ML)/GaSb (6 ML) with different thicknesses of InSb interface grown by molecular beam epitaxy (MBE). The high-resolution x-ray diffraction (XRD) curves display sharp satellite peaks, and the narrow full width at half maximum (FWHM) of the 0th is only 30–39 arcsec. From high-resolution cross-sectional transmission electron microscopy (HRTEM) characterization, the InSb heterointerfaces and the clear spatial separation between the InAs and GaSb layers can be more intuitively distinguished. As the InSb interface thickness increases, the compressive strain increases, and the surface “bright spots” appear to be more apparent from the atomic force microscopy (AFM) results. Also, photoluminescence (PL) measurements verify that, with the increase in the strain, the bandgap of the superlattice narrows. By optimizing the InSb interface, a high-quality crystal with a well-defined surface and interface is obtained with a PL wavelength of 4.78 μm, which can be used for mid-wave infrared (MWIR) detection. |
---|---|
ISSN: | 1674-1056 |
DOI: | 10.1088/1674-1056/ac8729 |