Loading…

Tellurene: An elemental 2D monolayer material beyond its bulk phases without van der Waals layered structures

Due to the quantum confinement effect, atomically thin two-dimensional (2D) monolayer materials possess distinct characteristics from their corresponding bulk materials, which have received wide attention from science and industry. Among all the 2D materials, elemental 2D materials with the simplest...

Full description

Saved in:
Bibliographic Details
Published in:Journal of semiconductors 2020-08, Vol.41 (8), p.81002-43
Main Authors: Cai, Xiaolin, Han, Xiaoyu, Zhao, Chunxiang, Niu, Chunyao, Jia, Yu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Due to the quantum confinement effect, atomically thin two-dimensional (2D) monolayer materials possess distinct characteristics from their corresponding bulk materials, which have received wide attention from science and industry. Among all the 2D materials, elemental 2D materials with the simplest components are most striking. As an emerging group-VIA elemental 2D monolayer material, tellurene exhibits many exciting fundamental properties, such as chemical and mechanical stabilities, bandgap and high carrier mobilities compared to phosphorene, graphene and MoS2, respectively. Besides, in further exploration, it was found that tellurene or tellurene-based device presents excellent thermoelectric properties, piezoelectric properties, quantum Hall effects, and superb optical properties especially nonlinear optics characteristics, etc. The properties of tellurene can be modulated by virtue of strain, defects, edges, and heterojunction effects. In view of so many unique properties, it has drawn significant interest since tellurene was predicted and fabricated successfully in 2017. In this paper, we review the 2D tellurene allotropes, experimental preparation, excellent properties, performance modulation and future development.
ISSN:1674-4926
2058-6140
DOI:10.1088/1674-4926/41/8/081002