Loading…
Modeling of 3D magnetic equilibrium effects on edge turbulence stability during RMP ELM suppression in tokamaks
Recent experimental observations have found turbulent fluctuation structures that are non-axisymmetric in a tokamak with applied 3D fields. In this paper, two fluid resistive effects are shown to produce changes relevant to turbulent transport in the modeled 3D magnetohydrodynamic (MHD) equilibrium...
Saved in:
Published in: | Nuclear fusion 2017-11, Vol.57 (11), p.116003 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Recent experimental observations have found turbulent fluctuation structures that are non-axisymmetric in a tokamak with applied 3D fields. In this paper, two fluid resistive effects are shown to produce changes relevant to turbulent transport in the modeled 3D magnetohydrodynamic (MHD) equilibrium of tokamak pedestals with these 3D fields applied. Ideal MHD models are insufficient to reproduce the relevant effects. By calculating the ideal 3D equilibrium using the VMEC code, the geometric shaping parameters that determine linear turbulence stability, including the normal curvature and local magnetic shear, are shown to be only weakly modified by applied 3D fields in the DIII-D tokamak. These ideal MHD effects are therefore not sufficient to explain the observed changes to fluctuations and transport. Using the M3D-C1 code to model the 3D equilibrium, density is shown to be redistributed on flux surfaces in the pedestal when resistive two fluid effects are included, while islands are screened by rotation in this region. The redistribution of density results in density and pressure gradient scale lengths that vary within pedestal flux surfaces between different helically localized flux tubes. This would produce different drive terms for trapped electron mode and kinetic ballooning mode turbulence, the latter of which is expected to be the limiting factor for pedestal pressure gradients in DIII-D. |
---|---|
ISSN: | 0029-5515 1741-4326 |
DOI: | 10.1088/1741-4326/aa7bad |