Loading…

Broadening of electron cyclotron power deposition and driven current profiles caused by dissipative diffractive propagation

Improvements in electron cyclotron resonance heating (ECRH) and current drive (ECCD) predictions are important issues for the design and control of high-performance fusion plasmas in future devices, where these should play a more important role as actuators than in devices to date. A newly developed...

Full description

Saved in:
Bibliographic Details
Published in:Nuclear fusion 2024-06, Vol.64 (6), p.66009
Main Authors: Yanagihara, K., Kubo, S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Improvements in electron cyclotron resonance heating (ECRH) and current drive (ECCD) predictions are important issues for the design and control of high-performance fusion plasmas in future devices, where these should play a more important role as actuators than in devices to date. A newly developed EC-prediction package based on the quasioptical ray tracing code PARADE revealed in JT-60SA that (i) the radial profiles of both EC power deposition and driven current are broadened and (ii) the net driven current is increased by a few kA/MW, in comparison with conventional predictions due to dissipative diffractive propagation (DDP). The mechanism of DDP is as follows: EC wave beam obliquely passing through the resonant surface is dissipated non-uniformly on its beam cross section, so that the beam trajectory shifts gradually and thus the resonant position also shifts, resulting in the broadened power deposition profile. This novel ECCD and ECRH prediction package based on PARADE is applicable not only to JT-60SA but other existing devices and even, future devices.
ISSN:0029-5515
1741-4326
DOI:10.1088/1741-4326/ad3c53