Loading…

Assessment of power generation performance characteristics using different solar photovoltaic technologies

Solar energy is a relatively free renewable, clean, green, and environmentally friendly energy resource produced from the sun, using different technologies like solar thermal and photovoltaic (PV) modules to generate heat and electricity, respectively. This paper aims to assess and compare the power...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physics. Conference series 2019-09, Vol.1311 (1), p.12004
Main Authors: Liu, Rensheng, Bimenyimana, Samuel, Osarumwense Asemota, Godwin Norense, Xu, Miaoyan, Dieu Niyonteze, Jean De, Li, Lingling
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Solar energy is a relatively free renewable, clean, green, and environmentally friendly energy resource produced from the sun, using different technologies like solar thermal and photovoltaic (PV) modules to generate heat and electricity, respectively. This paper aims to assess and compare the power generation performance characteristics of different solar PV module technologies by simulation, deploying identical input temperature and irradiance parameters. The solar PV designs were simulated using PVsyst Version 6.73 for 26.0 kW annual power and 42.9 MWh/year annual yields using the climate data of Sydney, Australia. The results show that monocrystalline solar technologies needed an area of 163m2, while polycrystalline and thin films needed areas of 173m2 and 260m2 respectively to generate 42.9MWh annual yield. The monocrystalline PV modules are more efficient at solar energy conversion than polycrystalline and thin film technologies, respectively (94.2% and 62.7%). The symmetric semi-toroid dome of sun heights against azimuthal angles show 13 bimodal pyriforms, that cut the azimuths at least twice on each of the optimisation lines. These optimal solution points were visible for every sunlight hour of between 6 and 18 hours (inclusive). They show convex sets of global optima (or local optima) with one minimum in the interval of convexity. Also, each of the minimum points for each of the 13 directed fish-like bimodal pyriforms was on ±60° azimuth. However, the assessment of respective PV module characteristics with respect to variation of irradiation and temperature, show that the general results from simulation displayed disparate changes in the voltages and currents of the generated power with respect to different solar PV modules. The proposed semi-toroid model indicates that many optimisation solutions for easier, cheaper, quicker and more efficient power generation are possible with appropriate design. It is recommended that the installation of a single-axis solar tracker or maximum power point tracker could overcome the azimuth angle effect.
ISSN:1742-6588
1742-6596
DOI:10.1088/1742-6596/1311/1/012004