Loading…
An experimental mechanism of a tandem flapping wing for micro aerial vehicle
Micro Aerial Vehicles, otherwise known as MAVs, is defined as an aerial vehicle that has a 15cm or less wingspan with a take off wight of less than 200g. Its miniature size and manoeuvrability allows it to fly in confined space at low Reynolds number flight conditions (100 - 100,000). In this study,...
Saved in:
Published in: | Journal of physics. Conference series 2019-11, Vol.1349 (1), p.12014 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Micro Aerial Vehicles, otherwise known as MAVs, is defined as an aerial vehicle that has a 15cm or less wingspan with a take off wight of less than 200g. Its miniature size and manoeuvrability allows it to fly in confined space at low Reynolds number flight conditions (100 - 100,000). In this study, an entothopter design inspired by dragonfly wings was investigated using a subsonic wind tunnel to see the effect of tandem wing configuration on the lift generation. The study was done at different flapping frequency (5-11Hz) and at different flight speed (5m/s, 7m/s, and 9m/s). It was observed that in phase flapping configuration produces better lift for all flapping frequency and all flight speed. |
---|---|
ISSN: | 1742-6588 1742-6596 |
DOI: | 10.1088/1742-6596/1349/1/012014 |