Loading…
Internet of Things (IoT) Fall Detection using Wearable Sensor
The IoT fall detection system detects the fall through the data classification of falling and daily living activity. It includes microcontroller board (Arduino Mega 2560), Inertial Measurement Unit sensor (Gy-521 mpu6050) and WI-FI module (ESP8266-01). There total ten (10) subjects in this project....
Saved in:
Published in: | Journal of physics. Conference series 2019-11, Vol.1372 (1), p.12048 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The IoT fall detection system detects the fall through the data classification of falling and daily living activity. It includes microcontroller board (Arduino Mega 2560), Inertial Measurement Unit sensor (Gy-521 mpu6050) and WI-FI module (ESP8266-01). There total ten (10) subjects in this project. The data of falling and non-falling (daily living activity) can be identified. The falling is the frontward fall, while the daily living activity includes standing, sitting, walking and crouching. K-nearest neighbour (k-NN) classifiers were used in the data classification. The accuracy of k-NN classifiers were 100% between falling and non-falling class. The feature was selected based on the percentage of accuracy of the k-NN classifier. The features of the Aareal.z (97.14%) and Angle.x (97.24%) were selected due to the good performance during the classification of the falling and non-falling class. The performance of the Aareal.z (58.41%) and Angle.x (57.78%) were satisfactory during the sub-classification of the non-falling class. Hence, the feature of Aareal.z and Angle.x were selected as the features which were implemented in the IoT fall detection device. |
---|---|
ISSN: | 1742-6588 1742-6596 |
DOI: | 10.1088/1742-6596/1372/1/012048 |