Loading…

Data Augmentation Using DCGAN for Improved Fault Detection of High Voltage Shunt Reactor

High voltage shunt reactor is an important equipment of power transmission systems. The accurate assessment of their operating status and the timely and correct diagnosis of faults and defects concern the operation safety of the entire grid. Health assessment of high voltage shunt reactors based on...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physics. Conference series 2021-06, Vol.1944 (1), p.12012
Main Authors: Zhu, Ming, Zhang, Zongxi, Mei, Jie, Zhou, Kejian, Chen, Pengan, Qi, Yongka, Huang, Qinqing
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:High voltage shunt reactor is an important equipment of power transmission systems. The accurate assessment of their operating status and the timely and correct diagnosis of faults and defects concern the operation safety of the entire grid. Health assessment of high voltage shunt reactors based on vibration signal, which can be used to characterize the hidden troubles of it, is a topic widely studied in deep learning and fault diagnosis. A large number of samples are needed to train the deep learning model, but it is not easy to acquire enough fault samples in the actual scene. In this paper, we utilize a Deep Convolutional Generative Adversarial Networks (DCGAN) to generate synthetic fault samples and enlarge the fault dataset to train the Convolution Neural Network (CNN) fault detection model. Results reveal that the performance through the CNN model can be improved by 3% with the synthetic samples generated by DCGAN, which is better than that of traditional Synthetic Minority Oversampling Technique (SMOTE) algorithm.
ISSN:1742-6588
1742-6596
DOI:10.1088/1742-6596/1944/1/012012