Loading…
Design and Implementation of Efficient MOSFET’s Utilization Based Proposed Voltage Controlled Oscillator
Ring oscillator is a device which consists of NOT gates connected in the form of ring. This ring oscillator’s output oscillates between the true and false stages controlled by applied voltage. Now days this voltage controlled oscillator (VCO) becomes the heart of modern electronic devices and commun...
Saved in:
Published in: | Journal of physics. Conference series 2021-11, Vol.2089 (1), p.12073 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Ring oscillator is a device which consists of NOT gates connected in the form of ring. This ring oscillator’s output oscillates between the true and false stages controlled by applied voltage. Now days this voltage controlled oscillator (VCO) becomes the heart of modern electronic devices and communication systems. Earlier five-stage complementary metal oxide semiconductor (CMOS) based VCO for the Phase Locked Loop (PLL) was implemented. High frequency oscillations are required for many applications and further it is observed that a very general technique is normally adopted by researchers to achieve high frequency that if number of transistors is increased then the frequency can be increased. But the consequences of increase in number of transistors are the increase in delay and more number of MOSFET occupies more area and more power dissipation. So, in this paper VCO is designed with efficient utilization of MOSFETs. There is a balance between frequency and number of transistors, so that the area and power dissipation can be reduced. From the obtained results it can observed that the number of MOSFET’s, Independent Nodes, boundary nodes total nodes and power are reduced compared to five stage VCO and VCO based Ring oscillator. |
---|---|
ISSN: | 1742-6588 1742-6596 |
DOI: | 10.1088/1742-6596/2089/1/012073 |