Loading…
Efficient computations of continuous action densities of states for lattice models
The Logarithmic Linear Relaxation (LLR) algorithm is an efficient method for computing densities of states for systems with a continuous spectrum. A key feature of this method is exponential error reduction, which allows us to evaluate the density of states of a system over hundreds of thousands of...
Saved in:
Published in: | Journal of physics. Conference series 2022-03, Vol.2207 (1), p.12052 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The Logarithmic Linear Relaxation (LLR) algorithm is an efficient method for computing densities of states for systems with a continuous spectrum. A key feature of this method is exponential error reduction, which allows us to evaluate the density of states of a system over hundreds of thousands of orders of magnitude with a fixed level of relative accuracy. As a consequence of exponential error reduction, the LLR method provides a robust alternative to traditional Monte Carlo calculations in cases in which states suppressed by the Boltzmann weight play nevertheless a relevant role, e.g., as transition regions between dominant configuration sets. After reviewing the algorithm, we will show an application in U(1) Lattice Gauge Theory that has enabled us to obtain the most accurate estimate of the critical coupling with modest computational resources, defeating exponential tunneling times between metastable vacua. As a further showcase, we will then present an application of the LLR method to the decorrelation of the topological charge in SU(3) Lattice Gauge Theory near the continuum limit. Finally, we will review in general applications of the LLR algorithm to systems affected by a strong sign problem and discuss the case of the Bose gas at finite chemical potential. |
---|---|
ISSN: | 1742-6588 1742-6596 |
DOI: | 10.1088/1742-6596/2207/1/012052 |