Loading…

Cyanide Molecular Laser-Induced Plasma Spectroscopy

This work communicates recent measurements of CN in laser-induced plasma. The main goals and objectives comprise (a) exploring CN measurement using optical emission spectroscopy in optical breakdown plasma; (b) determining the effects of laser-induced shockwave for time delays of the order of 1 μs;...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physics. Conference series 2023-01, Vol.2439 (1), p.12003
Main Authors: Parigger, C G, Helstern, C M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This work communicates recent measurements of CN in laser-induced plasma. The main goals and objectives comprise (a) exploring CN measurement using optical emission spectroscopy in optical breakdown plasma; (b) determining the effects of laser-induced shockwave for time delays of the order of 1 μs; (c) evaluating the spatial distribution of CN signals; (d) inferring CN temperature distribution; and (e) associating recorded shadowgraphs with laser-spectroscopy results. Q-switched, 150 mJ, 6 ns pulsed Nd:YAG laser radiation at the fundamental wavelength of 1064 nm is used to generate micro-plasma in a gas mixture with ultra-high purity nitrogen and research grade carbon dioxide. The CO 2 to N 2 molar ratio is 1 to 1 for the gaseous mixture near atmospheric pressure flowing through the chamber. Optical emissions are dispersed by a 0.64-m Czerny-Turner spectrometer and an intensified charge-coupled device records the data along the wavelength and slit dimensions. The analysis utilizes Abel integral inversion techniques for determination of spatiotemporal profiles.
ISSN:1742-6588
1742-6596
DOI:10.1088/1742-6596/2439/1/012003