Loading…
High resolution metrology of autoionizing states through Raman interferences
Metrology of electron wavepackets is often conducted with the technique of photoelectron interferometry. However, the ultrashort light pulses employed in this method place a limit on the energy resolution. Here, weadvance ultrafast photoelectron interferometry access both high temporal and spectral...
Saved in:
Published in: | Journal of physics. Conference series 2023-05, Vol.2494 (1), p.12003 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Metrology of electron wavepackets is often conducted with the technique of photoelectron interferometry. However, the ultrashort light pulses employed in this method place a limit on the energy resolution. Here, weadvance ultrafast photoelectron interferometry access both high temporal and spectral resolution. The key to our approach lies in stimulating Raman interferences with a probe pulse and while monitoring the modification of the autoionizing electron yield in a separate delayed detection step. As a proof of the principle, we demonstrated this technique to obtain the components of an autoionizing
nf′
wavepacket between the spin-orbit split ionization thresholds in argon. We extracted the amplitudes and phases from the interferogram and compared the experimental results with second-order perturbation theory calculations. This high resolution probing and metrology of electron dynamics opens the path for study of molecular wavepackets. |
---|---|
ISSN: | 1742-6588 1742-6596 |
DOI: | 10.1088/1742-6596/2494/1/012003 |