Loading…

Kinetic Energy Recovery from a landing aircraft: Evaluating Onboard Energy Solutions

This paper compares onboard Energy Storage Solutions (ESSs) for a Kinetic Energy Recovery System (KERS) from a landing aircraft. Energy is stored temporarily and reused so that it enables engine-less taxiing. This paper evaluates the choice of onboard Energy Storage Solutions (ESSs) (flywheels, batt...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physics. Conference series 2024-03, Vol.2716 (1), p.12018
Main Authors: Camilleri, R, Batra, A, Bartolo, L B, Delavault, A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper compares onboard Energy Storage Solutions (ESSs) for a Kinetic Energy Recovery System (KERS) from a landing aircraft. Energy is stored temporarily and reused so that it enables engine-less taxiing. This paper evaluates the choice of onboard Energy Storage Solutions (ESSs) (flywheels, batteries and supercapacitors) for recovering energy during the landing roll and storing it in the device. A design of an ESS with each of the three technologies was made, using commercially available products. The resulting devices are compared on the basis of weight, charging time, discharging time and complexity in retrofitting to existing systems. Results shows that while batteries have the highest energy density and will have the lowest weight, they are unable to charge/discharge quickly enough to satisfy this application. Conversely, supercapacitors have this ability but their low energy density make them heavy which in turn would offer penalty to the aircraft in flight. Flywheels emerge as the most interesting proposition due to their high energy density and fast charging ability, which satisfy the requirements for application.
ISSN:1742-6588
1742-6596
DOI:10.1088/1742-6596/2716/1/012018