Loading…

Study of viscosity of aluminum melt during glass transition by molecular dynamics and Green-Kubo formula

Molecular dynamics study of shear viscosity behavior of liquid aluminum is performed. The embedded atom method potential is used at the simulation of isobaric cooling. The viscosity is calculated using the Green-Kubo formula. The stress autocorrelation functions are obtained in the range 300-1200 K....

Full description

Saved in:
Bibliographic Details
Published in:Journal of physics. Conference series 2016-11, Vol.774 (1), p.12032
Main Authors: Kirova, E M, Pisarev, V V
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Molecular dynamics study of shear viscosity behavior of liquid aluminum is performed. The embedded atom method potential is used at the simulation of isobaric cooling. The viscosity is calculated using the Green-Kubo formula. The stress autocorrelation functions are obtained in the range 300-1200 K. The calculated kinematic viscosity is in agreement with the experimental data for the temperatures above melting temperature. The steep change of the shear viscosity is found below 650 K which we associate with the glass transition and is in a good agreement with the temperature which is obtained using the calorimetric criterion Kolotova et al (2015 J. Non-Cryst. Solids 429 98). The viscosity coefficient can not be calculated using the direct atomistic simulations below that temperature.
ISSN:1742-6588
1742-6596
DOI:10.1088/1742-6596/774/1/012032