Loading…

Properties of strontium doped barium titanate powder prepared by solid state reaction

Strontium doping material has been successfully doped to produce Barium Strontium Titanate (Ba1-xSrxTiO3) with variation in the percentage of moles of strontium 1%, 2%, 3%, 4% and 5% that processed by the solid state reaction method. Firstly, Ingredients (Barium carbonate, strontium carbonate and ti...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physics. Conference series 2016-11, Vol.776 (1), p.12052
Main Authors: Jamaluddin, A., Suwarni, Supriyanto, A., Iriani, Y.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Strontium doping material has been successfully doped to produce Barium Strontium Titanate (Ba1-xSrxTiO3) with variation in the percentage of moles of strontium 1%, 2%, 3%, 4% and 5% that processed by the solid state reaction method. Firstly, Ingredients (Barium carbonate, strontium carbonate and titanium oxide) have been mixed, milled during 6 hours to form solid powders. Then, sample pellets were pressed by mold machine which have been sintered in a furnace at 1100 °C during 2 hours. The properties of sample were observed using X-Ray Diffraction (XRD) for analyzing crystalline structure, Scanning Electron Microscopy (SEM) for showing morphological properties, RCL meter for dielectric constant. The XRD results indicated that the diffraction pattern is Ba1-xSrxTiO3 (BST) pattern. In addition, the results of General Structure Analysis System (GSAS) refinement with the Rietveld method showed that strontium doping has entered into Barium Titanate (BaTiO3). Increasing the number of moles of strontium has changed the lattice parameter and tertagonality of crystal BST. It affected the grain size and dielectric constant of BST too.
ISSN:1742-6588
1742-6596
DOI:10.1088/1742-6596/776/1/012052