Loading…

Preliminary study of degradation from neutron effects of core-structural materials of Thai Research Reactor TRR-1/M1

Thai research reactor went first critical in 1962. The reactor was converted in 1977 from an MTR-type with high-enriched uranium fuel to a TRIGA-MARK III type using low-enriched uranium fuel, called TRR-1/M1. Since the TRR-1/M1 has been operated for almost 40 years, degradation of reactor structural...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physics. Conference series 2017-06, Vol.860 (1), p.12042
Main Authors: Ampornrat, P, Boonsuwan, P, Sangkaew, S, Angwongtrakool, T
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Thai research reactor went first critical in 1962. The reactor was converted in 1977 from an MTR-type with high-enriched uranium fuel to a TRIGA-MARK III type using low-enriched uranium fuel, called TRR-1/M1. Since the TRR-1/M1 has been operated for almost 40 years, degradation of reactor structural materials is expected. In this preliminary study, the potential degradation from neutron effects of core-structural materials, e.g., fuel clad (SS304) and core components (Al6061) were studied. Assessment included calculation of neutron energy, flux and fluence in the reactor core to evaluate displacement rate (dpa) and irradiation effects on the material properties. Results showed maximum displacement rates on SS304 was 5.24×10-8 per cm3·sec and on Al6061 was 1.14×10-8 per cm3·sec. The corresponding maximum displacement levels were ∼17 dpa for SS304, and ∼4 dpa for Al6061. At these levels of displacement, it is possible for the materials to result in tensile strength increasing and ductility reduction. Further inspection on the core-structural materials needs to be conducted to validate the assessment results from this study.
ISSN:1742-6588
1742-6596
DOI:10.1088/1742-6596/860/1/012042