Loading…
The Windowless Gaseous Tritium Source (WGTS) of the KATRIN experiment
The Karlsruhe Tritium Neutrino Experiment (KATRIN) will perform a direct, kinematics-based measurement of the neutrino mass with a sensitivity of 200 meV (90 % C. L.), which will be reached after 3 years of measurement time. The neutrino mass is obtained by investigating the shape of the energy spec...
Saved in:
Published in: | Journal of physics. Conference series 2017-09, Vol.888 (1), p.12071 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The Karlsruhe Tritium Neutrino Experiment (KATRIN) will perform a direct, kinematics-based measurement of the neutrino mass with a sensitivity of 200 meV (90 % C. L.), which will be reached after 3 years of measurement time. The neutrino mass is obtained by investigating the shape of the energy spectrum of tritium β-decay electrons close to the endpoint at 18.6 keV with a spectrometer of MAC-E filter type. This contribution reviews the current status of the tritium source cryostat and magnet system which is currently in its first cool-down phase. Furthermore, the next steps of the comprehensive pre-tritium measurement programme to characterise the apparatus and investigate important systematics are outlined. This work is supported by BMBF (05A14VK2) and the Helmholtz Association. |
---|---|
ISSN: | 1742-6588 1742-6596 |
DOI: | 10.1088/1742-6596/888/1/012071 |