Loading…

Regeneration of periapical lesions post-endodontic treatment and periapical surgeries in experimental animals utilizing thermo-responsive nano-β-tricalcium phosphate/chitosan hydrogel: a proof of concept

Using phosphate nanoparticles/polymeric hydrogels presents an interesting approach, especially concerning the reduced particle migration and enhanced biocompatibility. The current work aims to achieve a proof of concept for the development of a thermo-sensitive nano β-tricalcium phosphate (β-TCP)/ch...

Full description

Saved in:
Bibliographic Details
Published in:Biomedical materials (Bristol) 2017-07, Vol.12 (4), p.045007-045007
Main Authors: Abdel-Fattah, Wafa I, El Ashry, Salma Hassan, Ali, Ghareib W, Hamid, Mohamed Aiad Abdel, El-Din, Amina Gamal, El-Ashry, Bassma
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Using phosphate nanoparticles/polymeric hydrogels presents an interesting approach, especially concerning the reduced particle migration and enhanced biocompatibility. The current work aims to achieve a proof of concept for the development of a thermo-sensitive nano β-tricalcium phosphate (β-TCP)/chitosan (Cs)/glycerophosphate (Gl)/glyoxal (Gly) hydrogel to be applied in periapical surgeries post endodontic treatment. Physicochemical characterization using x-ray powder diffraction, Fourier transform infrared, TEM and SEM was performed. Bone formation efficiency of the achieved β-TCP/Cs/Gl/Gly hydrogel was followed. The composite gels were tested in vivo in dogs in comparison with the commercially available and surgically applied Klipdent-PL up to three months. Radiographic examinations were performed. Histological evaluations were achieved through histomorphological criteria being apical cementum surface, bone tissue resorption, apical PDL thickness, the intensity of inflammatory reaction and osseous repair. The cytotoxicity results proved the safety of the developed hydrogel. The thermo-sensitive hydrogel possessed comparable enhanced biocompatibility with anti-inflammatory activity. New bone formation was clearly enhanced in the infected teeth. Therefore, it can be directly applied in specific non-invasive dental surgeries.
ISSN:1748-6041
1748-605X
1748-605X
DOI:10.1088/1748-605X/aa6f26