Loading…

A random wave model for the Aharonov-Bohm effect

We study an ensemble of random waves subject to the Aharonov-Bohm effect. The introduction of a point with a magnetic flux of arbitrary strength into a random wave ensemble gives a family of wavefunctions whose distribution of vortices (complex zeros) is responsible for the topological phase associa...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physics. A, Mathematical and theoretical Mathematical and theoretical, 2017-05, Vol.50 (20), p.205101
Main Authors: Houston, Alexander J H, Gradhand, Martin, Dennis, Mark R
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c322t-dae40518f7a4d6c9071afd7d2f928bc239ec7beac04b6b0d8105fa345ff55f523
cites cdi_FETCH-LOGICAL-c322t-dae40518f7a4d6c9071afd7d2f928bc239ec7beac04b6b0d8105fa345ff55f523
container_end_page
container_issue 20
container_start_page 205101
container_title Journal of physics. A, Mathematical and theoretical
container_volume 50
creator Houston, Alexander J H
Gradhand, Martin
Dennis, Mark R
description We study an ensemble of random waves subject to the Aharonov-Bohm effect. The introduction of a point with a magnetic flux of arbitrary strength into a random wave ensemble gives a family of wavefunctions whose distribution of vortices (complex zeros) is responsible for the topological phase associated with the Aharonov-Bohm effect. Analytical expressions are found for the vortex number and topological charge densities as functions of distance from the flux point. Comparison is made with the distribution of vortices in the isotropic random wave model. The results indicate that as the flux approaches half-integer values, a vortex with the same sign as the fractional part of the flux is attracted to the flux point, merging with it in the limit of half-integer flux. We construct a statistical model of the neighbourhood of the flux point to study how this vortex-flux merger occurs in more detail. Other features of the Aharonov-Bohm vortex distribution are also explored.
doi_str_mv 10.1088/1751-8121/aa660f
format article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_iop_journals_10_1088_1751_8121_aa660f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>aaa660f</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-dae40518f7a4d6c9071afd7d2f928bc239ec7beac04b6b0d8105fa345ff55f523</originalsourceid><addsrcrecordid>eNp1j8FOwzAMhiMEEmNw55gHoMxJmzY9lgkG0iQu2zlyk1jdtDZTWoZ4e1YV7cbpt375s_wx9ijgWYDWC1EokWghxQIxz4Gu2OxSXV9mkd6yu77fA6gMSjljUPGInQst_8aT521w_sApRD40nlcNxtCFU_ISmpZ7Im-He3ZDeOj9w1_O2fbtdbN8T9afq49ltU5sKuWQOPQZKKGpwMzltoRCILnCSSqlrq1MS2-L2qOFrM5rcFqAIkwzRaQUKZnOGUx3bQx9Hz2ZY9y1GH-MADMam1HJjHpmMj4jTxOyC0ezD1-xOz_4__ov1_tWdQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A random wave model for the Aharonov-Bohm effect</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Houston, Alexander J H ; Gradhand, Martin ; Dennis, Mark R</creator><creatorcontrib>Houston, Alexander J H ; Gradhand, Martin ; Dennis, Mark R</creatorcontrib><description>We study an ensemble of random waves subject to the Aharonov-Bohm effect. The introduction of a point with a magnetic flux of arbitrary strength into a random wave ensemble gives a family of wavefunctions whose distribution of vortices (complex zeros) is responsible for the topological phase associated with the Aharonov-Bohm effect. Analytical expressions are found for the vortex number and topological charge densities as functions of distance from the flux point. Comparison is made with the distribution of vortices in the isotropic random wave model. The results indicate that as the flux approaches half-integer values, a vortex with the same sign as the fractional part of the flux is attracted to the flux point, merging with it in the limit of half-integer flux. We construct a statistical model of the neighbourhood of the flux point to study how this vortex-flux merger occurs in more detail. Other features of the Aharonov-Bohm vortex distribution are also explored.</description><identifier>ISSN: 1751-8113</identifier><identifier>EISSN: 1751-8121</identifier><identifier>DOI: 10.1088/1751-8121/aa660f</identifier><identifier>CODEN: JPHAC5</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>Aharonov-Bohm effect ; magnetic flux ; vortex correlations ; wave vortices</subject><ispartof>Journal of physics. A, Mathematical and theoretical, 2017-05, Vol.50 (20), p.205101</ispartof><rights>2017 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-dae40518f7a4d6c9071afd7d2f928bc239ec7beac04b6b0d8105fa345ff55f523</citedby><cites>FETCH-LOGICAL-c322t-dae40518f7a4d6c9071afd7d2f928bc239ec7beac04b6b0d8105fa345ff55f523</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Houston, Alexander J H</creatorcontrib><creatorcontrib>Gradhand, Martin</creatorcontrib><creatorcontrib>Dennis, Mark R</creatorcontrib><title>A random wave model for the Aharonov-Bohm effect</title><title>Journal of physics. A, Mathematical and theoretical</title><addtitle>JPhysA</addtitle><addtitle>J. Phys. A: Math. Theor</addtitle><description>We study an ensemble of random waves subject to the Aharonov-Bohm effect. The introduction of a point with a magnetic flux of arbitrary strength into a random wave ensemble gives a family of wavefunctions whose distribution of vortices (complex zeros) is responsible for the topological phase associated with the Aharonov-Bohm effect. Analytical expressions are found for the vortex number and topological charge densities as functions of distance from the flux point. Comparison is made with the distribution of vortices in the isotropic random wave model. The results indicate that as the flux approaches half-integer values, a vortex with the same sign as the fractional part of the flux is attracted to the flux point, merging with it in the limit of half-integer flux. We construct a statistical model of the neighbourhood of the flux point to study how this vortex-flux merger occurs in more detail. Other features of the Aharonov-Bohm vortex distribution are also explored.</description><subject>Aharonov-Bohm effect</subject><subject>magnetic flux</subject><subject>vortex correlations</subject><subject>wave vortices</subject><issn>1751-8113</issn><issn>1751-8121</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1j8FOwzAMhiMEEmNw55gHoMxJmzY9lgkG0iQu2zlyk1jdtDZTWoZ4e1YV7cbpt375s_wx9ijgWYDWC1EokWghxQIxz4Gu2OxSXV9mkd6yu77fA6gMSjljUPGInQst_8aT521w_sApRD40nlcNxtCFU_ISmpZ7Im-He3ZDeOj9w1_O2fbtdbN8T9afq49ltU5sKuWQOPQZKKGpwMzltoRCILnCSSqlrq1MS2-L2qOFrM5rcFqAIkwzRaQUKZnOGUx3bQx9Hz2ZY9y1GH-MADMam1HJjHpmMj4jTxOyC0ezD1-xOz_4__ov1_tWdQ</recordid><startdate>20170519</startdate><enddate>20170519</enddate><creator>Houston, Alexander J H</creator><creator>Gradhand, Martin</creator><creator>Dennis, Mark R</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170519</creationdate><title>A random wave model for the Aharonov-Bohm effect</title><author>Houston, Alexander J H ; Gradhand, Martin ; Dennis, Mark R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-dae40518f7a4d6c9071afd7d2f928bc239ec7beac04b6b0d8105fa345ff55f523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aharonov-Bohm effect</topic><topic>magnetic flux</topic><topic>vortex correlations</topic><topic>wave vortices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Houston, Alexander J H</creatorcontrib><creatorcontrib>Gradhand, Martin</creatorcontrib><creatorcontrib>Dennis, Mark R</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physics. A, Mathematical and theoretical</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Houston, Alexander J H</au><au>Gradhand, Martin</au><au>Dennis, Mark R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A random wave model for the Aharonov-Bohm effect</atitle><jtitle>Journal of physics. A, Mathematical and theoretical</jtitle><stitle>JPhysA</stitle><addtitle>J. Phys. A: Math. Theor</addtitle><date>2017-05-19</date><risdate>2017</risdate><volume>50</volume><issue>20</issue><spage>205101</spage><pages>205101-</pages><issn>1751-8113</issn><eissn>1751-8121</eissn><coden>JPHAC5</coden><abstract>We study an ensemble of random waves subject to the Aharonov-Bohm effect. The introduction of a point with a magnetic flux of arbitrary strength into a random wave ensemble gives a family of wavefunctions whose distribution of vortices (complex zeros) is responsible for the topological phase associated with the Aharonov-Bohm effect. Analytical expressions are found for the vortex number and topological charge densities as functions of distance from the flux point. Comparison is made with the distribution of vortices in the isotropic random wave model. The results indicate that as the flux approaches half-integer values, a vortex with the same sign as the fractional part of the flux is attracted to the flux point, merging with it in the limit of half-integer flux. We construct a statistical model of the neighbourhood of the flux point to study how this vortex-flux merger occurs in more detail. Other features of the Aharonov-Bohm vortex distribution are also explored.</abstract><pub>IOP Publishing</pub><doi>10.1088/1751-8121/aa660f</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1751-8113
ispartof Journal of physics. A, Mathematical and theoretical, 2017-05, Vol.50 (20), p.205101
issn 1751-8113
1751-8121
language eng
recordid cdi_iop_journals_10_1088_1751_8121_aa660f
source Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)
subjects Aharonov-Bohm effect
magnetic flux
vortex correlations
wave vortices
title A random wave model for the Aharonov-Bohm effect
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T19%3A47%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20random%20wave%20model%20for%20the%20Aharonov-Bohm%20effect&rft.jtitle=Journal%20of%20physics.%20A,%20Mathematical%20and%20theoretical&rft.au=Houston,%20Alexander%20J%20H&rft.date=2017-05-19&rft.volume=50&rft.issue=20&rft.spage=205101&rft.pages=205101-&rft.issn=1751-8113&rft.eissn=1751-8121&rft.coden=JPHAC5&rft_id=info:doi/10.1088/1751-8121/aa660f&rft_dat=%3Ciop_cross%3Eaaa660f%3C/iop_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c322t-dae40518f7a4d6c9071afd7d2f928bc239ec7beac04b6b0d8105fa345ff55f523%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true