Loading…
A random wave model for the Aharonov-Bohm effect
We study an ensemble of random waves subject to the Aharonov-Bohm effect. The introduction of a point with a magnetic flux of arbitrary strength into a random wave ensemble gives a family of wavefunctions whose distribution of vortices (complex zeros) is responsible for the topological phase associa...
Saved in:
Published in: | Journal of physics. A, Mathematical and theoretical Mathematical and theoretical, 2017-05, Vol.50 (20), p.205101 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c322t-dae40518f7a4d6c9071afd7d2f928bc239ec7beac04b6b0d8105fa345ff55f523 |
---|---|
cites | cdi_FETCH-LOGICAL-c322t-dae40518f7a4d6c9071afd7d2f928bc239ec7beac04b6b0d8105fa345ff55f523 |
container_end_page | |
container_issue | 20 |
container_start_page | 205101 |
container_title | Journal of physics. A, Mathematical and theoretical |
container_volume | 50 |
creator | Houston, Alexander J H Gradhand, Martin Dennis, Mark R |
description | We study an ensemble of random waves subject to the Aharonov-Bohm effect. The introduction of a point with a magnetic flux of arbitrary strength into a random wave ensemble gives a family of wavefunctions whose distribution of vortices (complex zeros) is responsible for the topological phase associated with the Aharonov-Bohm effect. Analytical expressions are found for the vortex number and topological charge densities as functions of distance from the flux point. Comparison is made with the distribution of vortices in the isotropic random wave model. The results indicate that as the flux approaches half-integer values, a vortex with the same sign as the fractional part of the flux is attracted to the flux point, merging with it in the limit of half-integer flux. We construct a statistical model of the neighbourhood of the flux point to study how this vortex-flux merger occurs in more detail. Other features of the Aharonov-Bohm vortex distribution are also explored. |
doi_str_mv | 10.1088/1751-8121/aa660f |
format | article |
fullrecord | <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_iop_journals_10_1088_1751_8121_aa660f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>aaa660f</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-dae40518f7a4d6c9071afd7d2f928bc239ec7beac04b6b0d8105fa345ff55f523</originalsourceid><addsrcrecordid>eNp1j8FOwzAMhiMEEmNw55gHoMxJmzY9lgkG0iQu2zlyk1jdtDZTWoZ4e1YV7cbpt375s_wx9ijgWYDWC1EokWghxQIxz4Gu2OxSXV9mkd6yu77fA6gMSjljUPGInQst_8aT521w_sApRD40nlcNxtCFU_ISmpZ7Im-He3ZDeOj9w1_O2fbtdbN8T9afq49ltU5sKuWQOPQZKKGpwMzltoRCILnCSSqlrq1MS2-L2qOFrM5rcFqAIkwzRaQUKZnOGUx3bQx9Hz2ZY9y1GH-MADMam1HJjHpmMj4jTxOyC0ezD1-xOz_4__ov1_tWdQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A random wave model for the Aharonov-Bohm effect</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Houston, Alexander J H ; Gradhand, Martin ; Dennis, Mark R</creator><creatorcontrib>Houston, Alexander J H ; Gradhand, Martin ; Dennis, Mark R</creatorcontrib><description>We study an ensemble of random waves subject to the Aharonov-Bohm effect. The introduction of a point with a magnetic flux of arbitrary strength into a random wave ensemble gives a family of wavefunctions whose distribution of vortices (complex zeros) is responsible for the topological phase associated with the Aharonov-Bohm effect. Analytical expressions are found for the vortex number and topological charge densities as functions of distance from the flux point. Comparison is made with the distribution of vortices in the isotropic random wave model. The results indicate that as the flux approaches half-integer values, a vortex with the same sign as the fractional part of the flux is attracted to the flux point, merging with it in the limit of half-integer flux. We construct a statistical model of the neighbourhood of the flux point to study how this vortex-flux merger occurs in more detail. Other features of the Aharonov-Bohm vortex distribution are also explored.</description><identifier>ISSN: 1751-8113</identifier><identifier>EISSN: 1751-8121</identifier><identifier>DOI: 10.1088/1751-8121/aa660f</identifier><identifier>CODEN: JPHAC5</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>Aharonov-Bohm effect ; magnetic flux ; vortex correlations ; wave vortices</subject><ispartof>Journal of physics. A, Mathematical and theoretical, 2017-05, Vol.50 (20), p.205101</ispartof><rights>2017 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-dae40518f7a4d6c9071afd7d2f928bc239ec7beac04b6b0d8105fa345ff55f523</citedby><cites>FETCH-LOGICAL-c322t-dae40518f7a4d6c9071afd7d2f928bc239ec7beac04b6b0d8105fa345ff55f523</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Houston, Alexander J H</creatorcontrib><creatorcontrib>Gradhand, Martin</creatorcontrib><creatorcontrib>Dennis, Mark R</creatorcontrib><title>A random wave model for the Aharonov-Bohm effect</title><title>Journal of physics. A, Mathematical and theoretical</title><addtitle>JPhysA</addtitle><addtitle>J. Phys. A: Math. Theor</addtitle><description>We study an ensemble of random waves subject to the Aharonov-Bohm effect. The introduction of a point with a magnetic flux of arbitrary strength into a random wave ensemble gives a family of wavefunctions whose distribution of vortices (complex zeros) is responsible for the topological phase associated with the Aharonov-Bohm effect. Analytical expressions are found for the vortex number and topological charge densities as functions of distance from the flux point. Comparison is made with the distribution of vortices in the isotropic random wave model. The results indicate that as the flux approaches half-integer values, a vortex with the same sign as the fractional part of the flux is attracted to the flux point, merging with it in the limit of half-integer flux. We construct a statistical model of the neighbourhood of the flux point to study how this vortex-flux merger occurs in more detail. Other features of the Aharonov-Bohm vortex distribution are also explored.</description><subject>Aharonov-Bohm effect</subject><subject>magnetic flux</subject><subject>vortex correlations</subject><subject>wave vortices</subject><issn>1751-8113</issn><issn>1751-8121</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1j8FOwzAMhiMEEmNw55gHoMxJmzY9lgkG0iQu2zlyk1jdtDZTWoZ4e1YV7cbpt375s_wx9ijgWYDWC1EokWghxQIxz4Gu2OxSXV9mkd6yu77fA6gMSjljUPGInQst_8aT521w_sApRD40nlcNxtCFU_ISmpZ7Im-He3ZDeOj9w1_O2fbtdbN8T9afq49ltU5sKuWQOPQZKKGpwMzltoRCILnCSSqlrq1MS2-L2qOFrM5rcFqAIkwzRaQUKZnOGUx3bQx9Hz2ZY9y1GH-MADMam1HJjHpmMj4jTxOyC0ezD1-xOz_4__ov1_tWdQ</recordid><startdate>20170519</startdate><enddate>20170519</enddate><creator>Houston, Alexander J H</creator><creator>Gradhand, Martin</creator><creator>Dennis, Mark R</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170519</creationdate><title>A random wave model for the Aharonov-Bohm effect</title><author>Houston, Alexander J H ; Gradhand, Martin ; Dennis, Mark R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-dae40518f7a4d6c9071afd7d2f928bc239ec7beac04b6b0d8105fa345ff55f523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aharonov-Bohm effect</topic><topic>magnetic flux</topic><topic>vortex correlations</topic><topic>wave vortices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Houston, Alexander J H</creatorcontrib><creatorcontrib>Gradhand, Martin</creatorcontrib><creatorcontrib>Dennis, Mark R</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physics. A, Mathematical and theoretical</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Houston, Alexander J H</au><au>Gradhand, Martin</au><au>Dennis, Mark R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A random wave model for the Aharonov-Bohm effect</atitle><jtitle>Journal of physics. A, Mathematical and theoretical</jtitle><stitle>JPhysA</stitle><addtitle>J. Phys. A: Math. Theor</addtitle><date>2017-05-19</date><risdate>2017</risdate><volume>50</volume><issue>20</issue><spage>205101</spage><pages>205101-</pages><issn>1751-8113</issn><eissn>1751-8121</eissn><coden>JPHAC5</coden><abstract>We study an ensemble of random waves subject to the Aharonov-Bohm effect. The introduction of a point with a magnetic flux of arbitrary strength into a random wave ensemble gives a family of wavefunctions whose distribution of vortices (complex zeros) is responsible for the topological phase associated with the Aharonov-Bohm effect. Analytical expressions are found for the vortex number and topological charge densities as functions of distance from the flux point. Comparison is made with the distribution of vortices in the isotropic random wave model. The results indicate that as the flux approaches half-integer values, a vortex with the same sign as the fractional part of the flux is attracted to the flux point, merging with it in the limit of half-integer flux. We construct a statistical model of the neighbourhood of the flux point to study how this vortex-flux merger occurs in more detail. Other features of the Aharonov-Bohm vortex distribution are also explored.</abstract><pub>IOP Publishing</pub><doi>10.1088/1751-8121/aa660f</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1751-8113 |
ispartof | Journal of physics. A, Mathematical and theoretical, 2017-05, Vol.50 (20), p.205101 |
issn | 1751-8113 1751-8121 |
language | eng |
recordid | cdi_iop_journals_10_1088_1751_8121_aa660f |
source | Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List) |
subjects | Aharonov-Bohm effect magnetic flux vortex correlations wave vortices |
title | A random wave model for the Aharonov-Bohm effect |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T19%3A47%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20random%20wave%20model%20for%20the%20Aharonov-Bohm%20effect&rft.jtitle=Journal%20of%20physics.%20A,%20Mathematical%20and%20theoretical&rft.au=Houston,%20Alexander%20J%20H&rft.date=2017-05-19&rft.volume=50&rft.issue=20&rft.spage=205101&rft.pages=205101-&rft.issn=1751-8113&rft.eissn=1751-8121&rft.coden=JPHAC5&rft_id=info:doi/10.1088/1751-8121/aa660f&rft_dat=%3Ciop_cross%3Eaaa660f%3C/iop_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c322t-dae40518f7a4d6c9071afd7d2f928bc239ec7beac04b6b0d8105fa345ff55f523%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |