Loading…
Schwinger-Dyson equations and line integrals
The complex Langevin (CL) method sometimes shows convergence to the wrong limit, even though the Schwinger-Dyson equations (SDE) are fulfilled. We analyze this problem in a more general context for the case of one complex variable. We prove a theorem that shows that under rather general conditions n...
Saved in:
Published in: | Journal of physics. A, Mathematical and theoretical Mathematical and theoretical, 2019-01, Vol.52 (3), p.35201 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c280t-8b23ac28b35890c88c667fb0a1c049ab7164ad71c97fea83e4534c2c9ae973283 |
---|---|
cites | cdi_FETCH-LOGICAL-c280t-8b23ac28b35890c88c667fb0a1c049ab7164ad71c97fea83e4534c2c9ae973283 |
container_end_page | |
container_issue | 3 |
container_start_page | 35201 |
container_title | Journal of physics. A, Mathematical and theoretical |
container_volume | 52 |
creator | Salcedo, Lorenzo Luis Seiler, Erhard |
description | The complex Langevin (CL) method sometimes shows convergence to the wrong limit, even though the Schwinger-Dyson equations (SDE) are fulfilled. We analyze this problem in a more general context for the case of one complex variable. We prove a theorem that shows that under rather general conditions not only the equilibrium measure of CL but any linear functional satisfying the SDE on a space of test functions is given by a linear combination of integrals along paths connecting the zeroes of the underlying measure and noncontractible closed paths. This proves rigorously a conjecture stated long ago by one of us (L. L. S.) and explains a fact observed in nonergodic cases of CL. |
doi_str_mv | 10.1088/1751-8121/aaefca |
format | article |
fullrecord | <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_iop_journals_10_1088_1751_8121_aaefca</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>aaaefca</sourcerecordid><originalsourceid>FETCH-LOGICAL-c280t-8b23ac28b35890c88c667fb0a1c049ab7164ad71c97fea83e4534c2c9ae973283</originalsourceid><addsrcrecordid>eNp1j8FOwzAQRC0EEqVw55gPaOiuncT2ERUoSJU4AGdr4zrFVXGKnQr170kU1BunGY12VvMYu0W4Q1BqjrLEXCHHOZFrLJ2xySk6P3kUl-wqpS1AWYDmEzZ7s58_PmxczB-OqQ2Z-z5Q59uQMgrrbOeDy3zo3CbSLl2zi6YXd_OnU_bx9Pi-eM5Xr8uXxf0qt1xBl6uaC-ptLUqlwSplq0o2NRBaKDTVEquC1hKtlo0jJVxRisJyq8lpKbgSUwbjXxvblKJrzD76L4pHg2AGWjPgmAHNjLR9ZTZWfLs32_YQQz_w__NfcBFW0A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Schwinger-Dyson equations and line integrals</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Salcedo, Lorenzo Luis ; Seiler, Erhard</creator><creatorcontrib>Salcedo, Lorenzo Luis ; Seiler, Erhard</creatorcontrib><description>The complex Langevin (CL) method sometimes shows convergence to the wrong limit, even though the Schwinger-Dyson equations (SDE) are fulfilled. We analyze this problem in a more general context for the case of one complex variable. We prove a theorem that shows that under rather general conditions not only the equilibrium measure of CL but any linear functional satisfying the SDE on a space of test functions is given by a linear combination of integrals along paths connecting the zeroes of the underlying measure and noncontractible closed paths. This proves rigorously a conjecture stated long ago by one of us (L. L. S.) and explains a fact observed in nonergodic cases of CL.</description><identifier>ISSN: 1751-8113</identifier><identifier>EISSN: 1751-8121</identifier><identifier>DOI: 10.1088/1751-8121/aaefca</identifier><identifier>CODEN: JPHAC5</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>complex Langevin ; Schwinger-Dyson equations ; sign problem</subject><ispartof>Journal of physics. A, Mathematical and theoretical, 2019-01, Vol.52 (3), p.35201</ispartof><rights>2018 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c280t-8b23ac28b35890c88c667fb0a1c049ab7164ad71c97fea83e4534c2c9ae973283</citedby><cites>FETCH-LOGICAL-c280t-8b23ac28b35890c88c667fb0a1c049ab7164ad71c97fea83e4534c2c9ae973283</cites><orcidid>0000-0002-4478-6397 ; 0000-0002-3575-0341</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Salcedo, Lorenzo Luis</creatorcontrib><creatorcontrib>Seiler, Erhard</creatorcontrib><title>Schwinger-Dyson equations and line integrals</title><title>Journal of physics. A, Mathematical and theoretical</title><addtitle>JPhysA</addtitle><addtitle>J. Phys. A: Math. Theor</addtitle><description>The complex Langevin (CL) method sometimes shows convergence to the wrong limit, even though the Schwinger-Dyson equations (SDE) are fulfilled. We analyze this problem in a more general context for the case of one complex variable. We prove a theorem that shows that under rather general conditions not only the equilibrium measure of CL but any linear functional satisfying the SDE on a space of test functions is given by a linear combination of integrals along paths connecting the zeroes of the underlying measure and noncontractible closed paths. This proves rigorously a conjecture stated long ago by one of us (L. L. S.) and explains a fact observed in nonergodic cases of CL.</description><subject>complex Langevin</subject><subject>Schwinger-Dyson equations</subject><subject>sign problem</subject><issn>1751-8113</issn><issn>1751-8121</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1j8FOwzAQRC0EEqVw55gPaOiuncT2ERUoSJU4AGdr4zrFVXGKnQr170kU1BunGY12VvMYu0W4Q1BqjrLEXCHHOZFrLJ2xySk6P3kUl-wqpS1AWYDmEzZ7s58_PmxczB-OqQ2Z-z5Q59uQMgrrbOeDy3zo3CbSLl2zi6YXd_OnU_bx9Pi-eM5Xr8uXxf0qt1xBl6uaC-ptLUqlwSplq0o2NRBaKDTVEquC1hKtlo0jJVxRisJyq8lpKbgSUwbjXxvblKJrzD76L4pHg2AGWjPgmAHNjLR9ZTZWfLs32_YQQz_w__NfcBFW0A</recordid><startdate>20190118</startdate><enddate>20190118</enddate><creator>Salcedo, Lorenzo Luis</creator><creator>Seiler, Erhard</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4478-6397</orcidid><orcidid>https://orcid.org/0000-0002-3575-0341</orcidid></search><sort><creationdate>20190118</creationdate><title>Schwinger-Dyson equations and line integrals</title><author>Salcedo, Lorenzo Luis ; Seiler, Erhard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c280t-8b23ac28b35890c88c667fb0a1c049ab7164ad71c97fea83e4534c2c9ae973283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>complex Langevin</topic><topic>Schwinger-Dyson equations</topic><topic>sign problem</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Salcedo, Lorenzo Luis</creatorcontrib><creatorcontrib>Seiler, Erhard</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physics. A, Mathematical and theoretical</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Salcedo, Lorenzo Luis</au><au>Seiler, Erhard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Schwinger-Dyson equations and line integrals</atitle><jtitle>Journal of physics. A, Mathematical and theoretical</jtitle><stitle>JPhysA</stitle><addtitle>J. Phys. A: Math. Theor</addtitle><date>2019-01-18</date><risdate>2019</risdate><volume>52</volume><issue>3</issue><spage>35201</spage><pages>35201-</pages><issn>1751-8113</issn><eissn>1751-8121</eissn><coden>JPHAC5</coden><abstract>The complex Langevin (CL) method sometimes shows convergence to the wrong limit, even though the Schwinger-Dyson equations (SDE) are fulfilled. We analyze this problem in a more general context for the case of one complex variable. We prove a theorem that shows that under rather general conditions not only the equilibrium measure of CL but any linear functional satisfying the SDE on a space of test functions is given by a linear combination of integrals along paths connecting the zeroes of the underlying measure and noncontractible closed paths. This proves rigorously a conjecture stated long ago by one of us (L. L. S.) and explains a fact observed in nonergodic cases of CL.</abstract><pub>IOP Publishing</pub><doi>10.1088/1751-8121/aaefca</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0002-4478-6397</orcidid><orcidid>https://orcid.org/0000-0002-3575-0341</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1751-8113 |
ispartof | Journal of physics. A, Mathematical and theoretical, 2019-01, Vol.52 (3), p.35201 |
issn | 1751-8113 1751-8121 |
language | eng |
recordid | cdi_iop_journals_10_1088_1751_8121_aaefca |
source | Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List) |
subjects | complex Langevin Schwinger-Dyson equations sign problem |
title | Schwinger-Dyson equations and line integrals |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T13%3A35%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Schwinger-Dyson%20equations%20and%20line%20integrals&rft.jtitle=Journal%20of%20physics.%20A,%20Mathematical%20and%20theoretical&rft.au=Salcedo,%20Lorenzo%20Luis&rft.date=2019-01-18&rft.volume=52&rft.issue=3&rft.spage=35201&rft.pages=35201-&rft.issn=1751-8113&rft.eissn=1751-8121&rft.coden=JPHAC5&rft_id=info:doi/10.1088/1751-8121/aaefca&rft_dat=%3Ciop_cross%3Eaaaefca%3C/iop_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c280t-8b23ac28b35890c88c667fb0a1c049ab7164ad71c97fea83e4534c2c9ae973283%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |