Loading…

Integrable fractional modified Korteweg–deVries, sine-Gordon, and sinh-Gordon equations

The inverse scattering transform allows explicit construction of solutions to many physically significant nonlinear wave equations. Notably, this method can be extended to fractional nonlinear evolution equations characterized by anomalous dispersion using completeness of suitable eigenfunctions of...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physics. A, Mathematical and theoretical Mathematical and theoretical, 2022-09, Vol.55 (38), p.384010
Main Authors: Ablowitz, Mark J, Been, Joel B, Carr, Lincoln D
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c280t-913fc3dac14e9d284076370f7d804fdc34e34ca0c5c7d71dedeaf4a501d88a3f3
cites cdi_FETCH-LOGICAL-c280t-913fc3dac14e9d284076370f7d804fdc34e34ca0c5c7d71dedeaf4a501d88a3f3
container_end_page
container_issue 38
container_start_page 384010
container_title Journal of physics. A, Mathematical and theoretical
container_volume 55
creator Ablowitz, Mark J
Been, Joel B
Carr, Lincoln D
description The inverse scattering transform allows explicit construction of solutions to many physically significant nonlinear wave equations. Notably, this method can be extended to fractional nonlinear evolution equations characterized by anomalous dispersion using completeness of suitable eigenfunctions of the associated linear scattering problem. In anomalous diffusion, the mean squared displacement is proportional to t α , α > 0, while in anomalous dispersion, the speed of localized waves is proportional to A α , where A is the amplitude of the wave. Fractional extensions of the modified Korteweg–deVries (mKdV), sine-Gordon (sineG) and sinh-Gordon (sinhG) and associated hierarchies are obtained. Using symmetries present in the linear scattering problem, these equations can be connected with a scalar family of nonlinear evolution equations of which fractional mKdV (fmKdV), fractional sineG (fsineG), and fractional sinhG (fsinhG) are special cases. Completeness of solutions to the scalar problem is obtained and, from this, the nonlinear evolution equation is characterized in terms of a spectral expansion. In particular, fmKdV, fsineG, and fsinhG are explicitly written. One-soliton solutions are derived for fmKdV and fsineG using the inverse scattering transform and these solitons are shown to exhibit anomalous dispersion.
doi_str_mv 10.1088/1751-8121/ac8844
format article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_iop_journals_10_1088_1751_8121_ac8844</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>aac8844</sourcerecordid><originalsourceid>FETCH-LOGICAL-c280t-913fc3dac14e9d284076370f7d804fdc34e34ca0c5c7d71dedeaf4a501d88a3f3</originalsourceid><addsrcrecordid>eNp1kMFKAzEURYMoWKt7l_MBHZtMMk66lKK1WHCjgqvwzHupKdNJTaaIO__BP_RL7DClO1fvcbn3wj2MXQp-JbjWY1GVIteiEGOwWit1xAYH6fjwC3nKzlJacV4qPikG7HXetLSM8FZT5iLY1ocG6mwd0DtPmD2E2NInLX-_f5Beoqc0ypJvKJ-FiKEZZdBgJ7zvhYw-ttCVpHN24qBOdLG_Q_Z8d_s0vc8Xj7P59GaR20LzNp8I6axEsELRBAuteHUtK-4q1Fw5tFKRVBa4LW2FlUBCAqeg5AK1BunkkPG-18aQUiRnNtGvIX4ZwU2HxnTbTcfB9Gh2kVEf8WFjVmEbd5PT__Y_d69nHA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Integrable fractional modified Korteweg–deVries, sine-Gordon, and sinh-Gordon equations</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Ablowitz, Mark J ; Been, Joel B ; Carr, Lincoln D</creator><creatorcontrib>Ablowitz, Mark J ; Been, Joel B ; Carr, Lincoln D</creatorcontrib><description>The inverse scattering transform allows explicit construction of solutions to many physically significant nonlinear wave equations. Notably, this method can be extended to fractional nonlinear evolution equations characterized by anomalous dispersion using completeness of suitable eigenfunctions of the associated linear scattering problem. In anomalous diffusion, the mean squared displacement is proportional to t α , α &gt; 0, while in anomalous dispersion, the speed of localized waves is proportional to A α , where A is the amplitude of the wave. Fractional extensions of the modified Korteweg–deVries (mKdV), sine-Gordon (sineG) and sinh-Gordon (sinhG) and associated hierarchies are obtained. Using symmetries present in the linear scattering problem, these equations can be connected with a scalar family of nonlinear evolution equations of which fractional mKdV (fmKdV), fractional sineG (fsineG), and fractional sinhG (fsinhG) are special cases. Completeness of solutions to the scalar problem is obtained and, from this, the nonlinear evolution equation is characterized in terms of a spectral expansion. In particular, fmKdV, fsineG, and fsinhG are explicitly written. One-soliton solutions are derived for fmKdV and fsineG using the inverse scattering transform and these solitons are shown to exhibit anomalous dispersion.</description><identifier>ISSN: 1751-8113</identifier><identifier>EISSN: 1751-8121</identifier><identifier>DOI: 10.1088/1751-8121/ac8844</identifier><identifier>CODEN: JPHAC5</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>fractional calculus ; integrable systems ; inverse scattering transform ; nonlinear waves ; solitons</subject><ispartof>Journal of physics. A, Mathematical and theoretical, 2022-09, Vol.55 (38), p.384010</ispartof><rights>2022 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c280t-913fc3dac14e9d284076370f7d804fdc34e34ca0c5c7d71dedeaf4a501d88a3f3</citedby><cites>FETCH-LOGICAL-c280t-913fc3dac14e9d284076370f7d804fdc34e34ca0c5c7d71dedeaf4a501d88a3f3</cites><orcidid>0000-0002-4848-7941 ; 0000-0002-0576-8129</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ablowitz, Mark J</creatorcontrib><creatorcontrib>Been, Joel B</creatorcontrib><creatorcontrib>Carr, Lincoln D</creatorcontrib><title>Integrable fractional modified Korteweg–deVries, sine-Gordon, and sinh-Gordon equations</title><title>Journal of physics. A, Mathematical and theoretical</title><addtitle>JPhysA</addtitle><addtitle>J. Phys. A: Math. Theor</addtitle><description>The inverse scattering transform allows explicit construction of solutions to many physically significant nonlinear wave equations. Notably, this method can be extended to fractional nonlinear evolution equations characterized by anomalous dispersion using completeness of suitable eigenfunctions of the associated linear scattering problem. In anomalous diffusion, the mean squared displacement is proportional to t α , α &gt; 0, while in anomalous dispersion, the speed of localized waves is proportional to A α , where A is the amplitude of the wave. Fractional extensions of the modified Korteweg–deVries (mKdV), sine-Gordon (sineG) and sinh-Gordon (sinhG) and associated hierarchies are obtained. Using symmetries present in the linear scattering problem, these equations can be connected with a scalar family of nonlinear evolution equations of which fractional mKdV (fmKdV), fractional sineG (fsineG), and fractional sinhG (fsinhG) are special cases. Completeness of solutions to the scalar problem is obtained and, from this, the nonlinear evolution equation is characterized in terms of a spectral expansion. In particular, fmKdV, fsineG, and fsinhG are explicitly written. One-soliton solutions are derived for fmKdV and fsineG using the inverse scattering transform and these solitons are shown to exhibit anomalous dispersion.</description><subject>fractional calculus</subject><subject>integrable systems</subject><subject>inverse scattering transform</subject><subject>nonlinear waves</subject><subject>solitons</subject><issn>1751-8113</issn><issn>1751-8121</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kMFKAzEURYMoWKt7l_MBHZtMMk66lKK1WHCjgqvwzHupKdNJTaaIO__BP_RL7DClO1fvcbn3wj2MXQp-JbjWY1GVIteiEGOwWit1xAYH6fjwC3nKzlJacV4qPikG7HXetLSM8FZT5iLY1ocG6mwd0DtPmD2E2NInLX-_f5Beoqc0ypJvKJ-FiKEZZdBgJ7zvhYw-ttCVpHN24qBOdLG_Q_Z8d_s0vc8Xj7P59GaR20LzNp8I6axEsELRBAuteHUtK-4q1Fw5tFKRVBa4LW2FlUBCAqeg5AK1BunkkPG-18aQUiRnNtGvIX4ZwU2HxnTbTcfB9Gh2kVEf8WFjVmEbd5PT__Y_d69nHA</recordid><startdate>20220923</startdate><enddate>20220923</enddate><creator>Ablowitz, Mark J</creator><creator>Been, Joel B</creator><creator>Carr, Lincoln D</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4848-7941</orcidid><orcidid>https://orcid.org/0000-0002-0576-8129</orcidid></search><sort><creationdate>20220923</creationdate><title>Integrable fractional modified Korteweg–deVries, sine-Gordon, and sinh-Gordon equations</title><author>Ablowitz, Mark J ; Been, Joel B ; Carr, Lincoln D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c280t-913fc3dac14e9d284076370f7d804fdc34e34ca0c5c7d71dedeaf4a501d88a3f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>fractional calculus</topic><topic>integrable systems</topic><topic>inverse scattering transform</topic><topic>nonlinear waves</topic><topic>solitons</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ablowitz, Mark J</creatorcontrib><creatorcontrib>Been, Joel B</creatorcontrib><creatorcontrib>Carr, Lincoln D</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physics. A, Mathematical and theoretical</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ablowitz, Mark J</au><au>Been, Joel B</au><au>Carr, Lincoln D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrable fractional modified Korteweg–deVries, sine-Gordon, and sinh-Gordon equations</atitle><jtitle>Journal of physics. A, Mathematical and theoretical</jtitle><stitle>JPhysA</stitle><addtitle>J. Phys. A: Math. Theor</addtitle><date>2022-09-23</date><risdate>2022</risdate><volume>55</volume><issue>38</issue><spage>384010</spage><pages>384010-</pages><issn>1751-8113</issn><eissn>1751-8121</eissn><coden>JPHAC5</coden><abstract>The inverse scattering transform allows explicit construction of solutions to many physically significant nonlinear wave equations. Notably, this method can be extended to fractional nonlinear evolution equations characterized by anomalous dispersion using completeness of suitable eigenfunctions of the associated linear scattering problem. In anomalous diffusion, the mean squared displacement is proportional to t α , α &gt; 0, while in anomalous dispersion, the speed of localized waves is proportional to A α , where A is the amplitude of the wave. Fractional extensions of the modified Korteweg–deVries (mKdV), sine-Gordon (sineG) and sinh-Gordon (sinhG) and associated hierarchies are obtained. Using symmetries present in the linear scattering problem, these equations can be connected with a scalar family of nonlinear evolution equations of which fractional mKdV (fmKdV), fractional sineG (fsineG), and fractional sinhG (fsinhG) are special cases. Completeness of solutions to the scalar problem is obtained and, from this, the nonlinear evolution equation is characterized in terms of a spectral expansion. In particular, fmKdV, fsineG, and fsinhG are explicitly written. One-soliton solutions are derived for fmKdV and fsineG using the inverse scattering transform and these solitons are shown to exhibit anomalous dispersion.</abstract><pub>IOP Publishing</pub><doi>10.1088/1751-8121/ac8844</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0002-4848-7941</orcidid><orcidid>https://orcid.org/0000-0002-0576-8129</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1751-8113
ispartof Journal of physics. A, Mathematical and theoretical, 2022-09, Vol.55 (38), p.384010
issn 1751-8113
1751-8121
language eng
recordid cdi_iop_journals_10_1088_1751_8121_ac8844
source Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)
subjects fractional calculus
integrable systems
inverse scattering transform
nonlinear waves
solitons
title Integrable fractional modified Korteweg–deVries, sine-Gordon, and sinh-Gordon equations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T09%3A08%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrable%20fractional%20modified%20Korteweg%E2%80%93deVries,%20sine-Gordon,%20and%20sinh-Gordon%20equations&rft.jtitle=Journal%20of%20physics.%20A,%20Mathematical%20and%20theoretical&rft.au=Ablowitz,%20Mark%20J&rft.date=2022-09-23&rft.volume=55&rft.issue=38&rft.spage=384010&rft.pages=384010-&rft.issn=1751-8113&rft.eissn=1751-8121&rft.coden=JPHAC5&rft_id=info:doi/10.1088/1751-8121/ac8844&rft_dat=%3Ciop_cross%3Eaac8844%3C/iop_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c280t-913fc3dac14e9d284076370f7d804fdc34e34ca0c5c7d71dedeaf4a501d88a3f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true