Loading…

An effective Hamiltonian for the simulation of open quantum molecular systems

We discuss the derivation of an effective Hamiltonian for open quantum many-particle systems. The aim is to define an operator that can be used for (molecular) simulations where, through the exchange of energy and matter with the surrounding environment (reservoir), the number of particles, n , beco...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physics. A, Mathematical and theoretical Mathematical and theoretical, 2024-06, Vol.57 (25), p.255002
Main Authors: Site, Luigi Delle, Djurdjevac, Ana
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c275t-b1e0acf69c433b6436ed27dd0ed16083b0f900628545b1b80c5acc94457c847d3
container_end_page
container_issue 25
container_start_page 255002
container_title Journal of physics. A, Mathematical and theoretical
container_volume 57
creator Site, Luigi Delle
Djurdjevac, Ana
description We discuss the derivation of an effective Hamiltonian for open quantum many-particle systems. The aim is to define an operator that can be used for (molecular) simulations where, through the exchange of energy and matter with the surrounding environment (reservoir), the number of particles, n , becomes a variable of the problem. The Hamiltonian is formally derived from the Von Neumann equation; specifically, we derive an n -hierarchy of equations for the density matrix, ρ ^ n , for near equilibrium situations. Such a hierarchy, in case of stationary equilibrium, delivers the standard grand canonical density matrix as it would be expected. We report that a similar Hamiltonian was conjectured, from empirical considerations, in the field of superconductivity. Thus our result also provide a formal basis for this long-standing hypothesis. Finally, an application is discussed for Path Integral simulations of molecular systems.
doi_str_mv 10.1088/1751-8121/ad5088
format article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_iop_journals_10_1088_1751_8121_ad5088</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>aad5088</sourcerecordid><originalsourceid>FETCH-LOGICAL-c275t-b1e0acf69c433b6436ed27dd0ed16083b0f900628545b1b80c5acc94457c847d3</originalsourceid><addsrcrecordid>eNp1UMFKxDAUDKLgunr3mA-w7kubtOlxWdQVVrzoOaRpglnapCapsH9vS2Vvnt4wb-bxZhC6J_BIgPMNqRjJOMnJRrZsIi7Q6kxdnjEprtFNjEcARqHOV-ht67A2RqtkfzTey952yTsrHTY-4PSlcbT92MlkvcPeYD9oh79H6dLY4953Wk3LgOMpJt3HW3RlZBf13d9co8_np4_dPju8v7zutodM5RVLWUM0SGXKWtGiaEpalLrNq7YF3ZISeNGAqQHKnDPKGtJwUEwqVVPKKsVp1RZrBMtdFXyMQRsxBNvLcBIExFyHmPOKObtY6pgsD4vF-kEc_Rjc9OD_8l_dN2Eo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>An effective Hamiltonian for the simulation of open quantum molecular systems</title><source>Institute of Physics</source><creator>Site, Luigi Delle ; Djurdjevac, Ana</creator><creatorcontrib>Site, Luigi Delle ; Djurdjevac, Ana</creatorcontrib><description>We discuss the derivation of an effective Hamiltonian for open quantum many-particle systems. The aim is to define an operator that can be used for (molecular) simulations where, through the exchange of energy and matter with the surrounding environment (reservoir), the number of particles, n , becomes a variable of the problem. The Hamiltonian is formally derived from the Von Neumann equation; specifically, we derive an n -hierarchy of equations for the density matrix, ρ ^ n , for near equilibrium situations. Such a hierarchy, in case of stationary equilibrium, delivers the standard grand canonical density matrix as it would be expected. We report that a similar Hamiltonian was conjectured, from empirical considerations, in the field of superconductivity. Thus our result also provide a formal basis for this long-standing hypothesis. Finally, an application is discussed for Path Integral simulations of molecular systems.</description><identifier>ISSN: 1751-8113</identifier><identifier>EISSN: 1751-8121</identifier><identifier>DOI: 10.1088/1751-8121/ad5088</identifier><identifier>CODEN: JPHAC5</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>molecular dynamics schemes ; open systems ; quantum many-particle systems ; Von Neumann equation</subject><ispartof>Journal of physics. A, Mathematical and theoretical, 2024-06, Vol.57 (25), p.255002</ispartof><rights>2024 The Author(s). Published by IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c275t-b1e0acf69c433b6436ed27dd0ed16083b0f900628545b1b80c5acc94457c847d3</cites><orcidid>0000-0001-8115-8261</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Site, Luigi Delle</creatorcontrib><creatorcontrib>Djurdjevac, Ana</creatorcontrib><title>An effective Hamiltonian for the simulation of open quantum molecular systems</title><title>Journal of physics. A, Mathematical and theoretical</title><addtitle>JPhysA</addtitle><addtitle>J. Phys. A: Math. Theor</addtitle><description>We discuss the derivation of an effective Hamiltonian for open quantum many-particle systems. The aim is to define an operator that can be used for (molecular) simulations where, through the exchange of energy and matter with the surrounding environment (reservoir), the number of particles, n , becomes a variable of the problem. The Hamiltonian is formally derived from the Von Neumann equation; specifically, we derive an n -hierarchy of equations for the density matrix, ρ ^ n , for near equilibrium situations. Such a hierarchy, in case of stationary equilibrium, delivers the standard grand canonical density matrix as it would be expected. We report that a similar Hamiltonian was conjectured, from empirical considerations, in the field of superconductivity. Thus our result also provide a formal basis for this long-standing hypothesis. Finally, an application is discussed for Path Integral simulations of molecular systems.</description><subject>molecular dynamics schemes</subject><subject>open systems</subject><subject>quantum many-particle systems</subject><subject>Von Neumann equation</subject><issn>1751-8113</issn><issn>1751-8121</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1UMFKxDAUDKLgunr3mA-w7kubtOlxWdQVVrzoOaRpglnapCapsH9vS2Vvnt4wb-bxZhC6J_BIgPMNqRjJOMnJRrZsIi7Q6kxdnjEprtFNjEcARqHOV-ht67A2RqtkfzTey952yTsrHTY-4PSlcbT92MlkvcPeYD9oh79H6dLY4953Wk3LgOMpJt3HW3RlZBf13d9co8_np4_dPju8v7zutodM5RVLWUM0SGXKWtGiaEpalLrNq7YF3ZISeNGAqQHKnDPKGtJwUEwqVVPKKsVp1RZrBMtdFXyMQRsxBNvLcBIExFyHmPOKObtY6pgsD4vF-kEc_Rjc9OD_8l_dN2Eo</recordid><startdate>20240621</startdate><enddate>20240621</enddate><creator>Site, Luigi Delle</creator><creator>Djurdjevac, Ana</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8115-8261</orcidid></search><sort><creationdate>20240621</creationdate><title>An effective Hamiltonian for the simulation of open quantum molecular systems</title><author>Site, Luigi Delle ; Djurdjevac, Ana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c275t-b1e0acf69c433b6436ed27dd0ed16083b0f900628545b1b80c5acc94457c847d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>molecular dynamics schemes</topic><topic>open systems</topic><topic>quantum many-particle systems</topic><topic>Von Neumann equation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Site, Luigi Delle</creatorcontrib><creatorcontrib>Djurdjevac, Ana</creatorcontrib><collection>IOP Publishing Free Content (Open Access)</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><jtitle>Journal of physics. A, Mathematical and theoretical</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Site, Luigi Delle</au><au>Djurdjevac, Ana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An effective Hamiltonian for the simulation of open quantum molecular systems</atitle><jtitle>Journal of physics. A, Mathematical and theoretical</jtitle><stitle>JPhysA</stitle><addtitle>J. Phys. A: Math. Theor</addtitle><date>2024-06-21</date><risdate>2024</risdate><volume>57</volume><issue>25</issue><spage>255002</spage><pages>255002-</pages><issn>1751-8113</issn><eissn>1751-8121</eissn><coden>JPHAC5</coden><abstract>We discuss the derivation of an effective Hamiltonian for open quantum many-particle systems. The aim is to define an operator that can be used for (molecular) simulations where, through the exchange of energy and matter with the surrounding environment (reservoir), the number of particles, n , becomes a variable of the problem. The Hamiltonian is formally derived from the Von Neumann equation; specifically, we derive an n -hierarchy of equations for the density matrix, ρ ^ n , for near equilibrium situations. Such a hierarchy, in case of stationary equilibrium, delivers the standard grand canonical density matrix as it would be expected. We report that a similar Hamiltonian was conjectured, from empirical considerations, in the field of superconductivity. Thus our result also provide a formal basis for this long-standing hypothesis. Finally, an application is discussed for Path Integral simulations of molecular systems.</abstract><pub>IOP Publishing</pub><doi>10.1088/1751-8121/ad5088</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-8115-8261</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1751-8113
ispartof Journal of physics. A, Mathematical and theoretical, 2024-06, Vol.57 (25), p.255002
issn 1751-8113
1751-8121
language eng
recordid cdi_iop_journals_10_1088_1751_8121_ad5088
source Institute of Physics
subjects molecular dynamics schemes
open systems
quantum many-particle systems
Von Neumann equation
title An effective Hamiltonian for the simulation of open quantum molecular systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T01%3A18%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20effective%20Hamiltonian%20for%20the%20simulation%20of%20open%20quantum%20molecular%20systems&rft.jtitle=Journal%20of%20physics.%20A,%20Mathematical%20and%20theoretical&rft.au=Site,%20Luigi%20Delle&rft.date=2024-06-21&rft.volume=57&rft.issue=25&rft.spage=255002&rft.pages=255002-&rft.issn=1751-8113&rft.eissn=1751-8121&rft.coden=JPHAC5&rft_id=info:doi/10.1088/1751-8121/ad5088&rft_dat=%3Ciop_cross%3Eaad5088%3C/iop_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c275t-b1e0acf69c433b6436ed27dd0ed16083b0f900628545b1b80c5acc94457c847d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true