Loading…
IoT based Growth Monitoring System of Guava (Psidium guajava L.) Fruits
Growth monitoring of plant is important especially to evaluate the influence of environment or growing condition on its productivity. One way to monitor the plant growth is by measuring the radial growth (i.e., the change of circumference) of certain part of plant such as trunk, branch, and fruit. I...
Saved in:
Published in: | IOP conference series. Earth and environmental science 2018-05, Vol.147 (1), p.12048 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Growth monitoring of plant is important especially to evaluate the influence of environment or growing condition on its productivity. One way to monitor the plant growth is by measuring the radial growth (i.e., the change of circumference) of certain part of plant such as trunk, branch, and fruit. In this study we develop an internet of things (IoT) based monitoring system of radial growth of plant using a low-cost optoelectronic sensor. The system was applied to monitor radial growth of guava fruits (Psidium guajava L.). The principle of the developed sensor is based on the optoelectronic sensor which detects alternating white and black narrow bar printed on reflective tapes. Reflective tape was installed encircling the fruit. The movement of reflective tapes will follow the radial growth of the fruit so that the infrared sensor on the optoelectronic would response reflective tapes movement. This device is designed to measure object continuously and long-term monitor with minimum maintenance. The data collected by the sensors are then sent to the server and also can be monitored in real-time. Based on field test, at current stage, the developed sensor could measure the radial growth of the fruits with a maximum error 2 mm. In term of data transfer, the success rate of the developed system was 97.54%. The result indicated that the developed system can be used as an effective tool for growth monitoring of plant. |
---|---|
ISSN: | 1755-1307 1755-1315 |
DOI: | 10.1088/1755-1315/147/1/012048 |