Loading…
A multi-objective optimization framework for designing climate-resilient building forms in urban areas
With the increasing global awareness about the impacts of climate change on the built environments, the need for improving the climate resilience of buildings is being more acknowledged. Despite the high number of relevant studies, there is a lack of frameworks to assess the resiliency of buildings...
Saved in:
Published in: | IOP conference series. Earth and environmental science 2020-11, Vol.588 (3), p.32036 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | With the increasing global awareness about the impacts of climate change on the built environments, the need for improving the climate resilience of buildings is being more acknowledged. Despite the high number of relevant studies, there is a lack of frameworks to assess the resiliency of buildings and urban areas. This study presents a multi-objective framework to optimize the form of buildings against its energy performance and thermal comfort considering its resiliency to the uncertainties of climate change during three thirty-years periods (2010-2099) of a warm region. Three performance sections related to building's form are identified and categorized for the impact assessment including (1) urban form, (2) orientation, and (3) transparency with ten influencing parameters. The analysis of non-dominated solutions out of the optimization process showed that the annual energy performance (cooling and heating demand) of the urban areas can improve about 34% in both typical and extreme weather conditions whilst maintaining thermal comfort by optimizing the overall form of the buildings with similar built density and heights. Moreover, Buildings with 15 to 30-degree rotations and 33% glazing ratio showed the highest energy performance. Finally, the top 20 resilient building forms with the highest energy performance and climate resiliency were selected out of the database of results to derive design suggestions. |
---|---|
ISSN: | 1755-1307 1755-1315 1755-1315 |
DOI: | 10.1088/1755-1315/588/3/032036 |