Loading…
The Use of InSAR for Monitoring Deformation of Offshore Platforms
Fluid extraction or injection from reservoirs, which corresponds to subsidence or uplift, can cause offshore platform surface deformation. Extremely large deformation of offshore platforms often lead to production losses, threat to the structure integrity and loss of life. Therefore, preventing seve...
Saved in:
Published in: | IOP conference series. Earth and environmental science 2021-05, Vol.767 (1), p.12033 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Fluid extraction or injection from reservoirs, which corresponds to subsidence or uplift, can cause offshore platform surface deformation. Extremely large deformation of offshore platforms often lead to production losses, threat to the structure integrity and loss of life. Therefore, preventing severe deformation incidents is important by monitoring surface deformation caused by oil and gas production activities. In this study, the A1 and B1 offshore platforms have been selected as research study areas to detect surface deformation caused by production activities. A total of 12 radar images from TerraSAR-X satellite were obtained from 24
th
August 2018 to 22
nd
August 2019 to derive surface deformation through the Stanford Method for Persistent Scatterers (StaMPS) method. The maximum amounts of subsidence observed on A1 and B1 platforms were -4 mm/yr and -6.3 mm/yr, respectively. This study provides an important insight the use of InSAR technology for the monitoring deformation of offshore platforms. |
---|---|
ISSN: | 1755-1307 1755-1315 |
DOI: | 10.1088/1755-1315/767/1/012033 |