Loading…

Calibration of Spatial Rain Scanner using Rainfall Depth of Rain Gauges

A spatial rain scanner has been developed based on a marine radar to satisfy the demand for spatial rain information for hydrological applications. Since the coverage of the rain scanner is 44 km in radius, it is necessary to expand the coverage by installing it in two sites that intersect each othe...

Full description

Saved in:
Bibliographic Details
Published in:IOP conference series. Earth and environmental science 2021-11, Vol.893 (1), p.12064
Main Authors: Sinatra, T, Awaludin, A, Nauval, F, Purnomo, C
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A spatial rain scanner has been developed based on a marine radar to satisfy the demand for spatial rain information for hydrological applications. Since the coverage of the rain scanner is 44 km in radius, it is necessary to expand the coverage by installing it in two sites that intersect each other performing a radar network. For this purpose, the first rain scanner has been installed at the Center for Atmospheric Science and Technology (PSTA) in Bandung and the second one at the Space and Atmospheric Observation Center (BPAA) Tanjungsari in Sumedang. This paper focuses on the calibration of radar observations with rainfall data from 7 rain gauges installed in Bandung area and its surroundings. The calibration method calculates rainfall depth (three parameters) instead of only the intensity of rainfall. The data period used for this research is from March to November 2020. The rain scanners have better rainfall events detection over basin area, such as Dayeuh Kolot and Cidurian, than over highland area, such as Lembang. Two calibration methods are used, and the results show that the calibration by calculating three parameters (accumulated reflectivity, duration, and intensity) in the linear model is able to measure rainfall estimation better than using a linear model with one parameter (accumulated reflectivity) for rainfall depth more than 10 mm. Rainfall estimation calculation using scheme 1 tends to underestimate while scheme 2 tends to overestimate.
ISSN:1755-1307
1755-1315
DOI:10.1088/1755-1315/893/1/012064