Loading…
Investigation on PMSM for electric vehicle applications using co-simulation of MATLAB and magnet software
Transportation plays an important role in all our day to day life. Advancements in technology have uplifted the transportation system into the next level by the introduction of E-Vehicle. E-vehicles are the replacement of gasoline vehicles which are the major reason for depletion of ozone layer. The...
Saved in:
Published in: | IOP conference series. Materials Science and Engineering 2021-02, Vol.1055 (1), p.12138 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Transportation plays an important role in all our day to day life. Advancements in technology have uplifted the transportation system into the next level by the introduction of E-Vehicle. E-vehicles are the replacement of gasoline vehicles which are the major reason for depletion of ozone layer. The main component of the E-vehicle is the motor which basically decides the efficiency of the vehicles. The design of the machine has a great impact on the efficiency and as well as on the engines output. Due to the poor analysis of electromagnetic properties of the motor, undesired fluctuations and pulsations would occur causing harmonics to take place thereby there is a huge increase in iron loss. This will also affect the control over the vehicle at low speed. A reasonable method to avoid such issues is to introduce an additional step of analyzing the electromagnetic properties before prototyping the machine. Analysis of the machine is done on the perspective with the integration of the motor and the other components. A new design phase where multi-domain analysis defines these phenomena will assist in the task of achieving an optimal design. A specific simulation tool for each domain is needed for analysis of the entire sys-tem. The co-simulation is carried out on a 10-pole, 12-slot interior Permanent Magnet Synchronous Motor (PMSM) in this paper to do finite element analysis in order to achieve the necessary efficiency. |
---|---|
ISSN: | 1757-8981 1757-899X |
DOI: | 10.1088/1757-899X/1055/1/012138 |