Loading…

Effect on Heat Transfer Characteristics of Nanofluids Flowing under Laminar and Turbulent Flow Regime - A Review

Heat transfer is a most important phenomenon that influence the performance of working device. To date several attempts have been made by researchers to minimize the size of heat exchangers in order to reduce the cost. Earlier we use some conventional fluids (water, air, engine oil etc.) for cooling...

Full description

Saved in:
Bibliographic Details
Published in:IOP conference series. Materials Science and Engineering 2017-08, Vol.225 (1), p.12168
Main Authors: Kumar, Prince, Pandey, K.M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Heat transfer is a most important phenomenon that influence the performance of working device. To date several attempts have been made by researchers to minimize the size of heat exchangers in order to reduce the cost. Earlier we use some conventional fluids (water, air, engine oil etc.) for cooling of automobile, refrigeration and some other industrial applications. But it is observed here that by using these fluids there is curb and hindrance in heat transfer rate because of very low thermal conductivity. From last ten-years new generation fluid introduced known as nanofluid. To increase the thermal conductivity of base fluid some amount of nanoparticles is added. Nanofluid have combined properties of nanoparticles as well as base fluid. Researcher found that heat transfer rate fully dependent of the thermal conductivity of nanoparticles as well as nanoparticle size diameter and volume concentration. This review paper summarised the recent research on enhancement of heat transfer and thermal performance of nanofluid as coolant for industrial applications.
ISSN:1757-8981
1757-899X
DOI:10.1088/1757-899X/225/1/012168