Loading…

Fabrication and Characterization of Carbonized Rice Husk/Barium Titanate Nanocomposites

Carbon materials were prepared by carbonizing rice husk (RHs) at 2500°C. Few- and multi-layer graphene were obtained from this carbonization process. Barium titanate (BTO) nanoparticles were fabricated by using sol-gel method. Then, the BTO nanoparticles were grafted onto the surface of carbonized r...

Full description

Saved in:
Bibliographic Details
Published in:IOP conference series. Materials Science and Engineering 2017-09, Vol.229 (1), p.12024
Main Authors: Melvin, G J H, Wang, Z, Ni, Q-Q, Siambun, N J, Rahman, M M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Carbon materials were prepared by carbonizing rice husk (RHs) at 2500°C. Few- and multi-layer graphene were obtained from this carbonization process. Barium titanate (BTO) nanoparticles were fabricated by using sol-gel method. Then, the BTO nanoparticles were grafted onto the surface of carbonized rice husk (CRH) to fabricate CRH/BTO nanocomposites. The nanocomposites were characterized using scanning transmission electron microscopy (STEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman measurement, and X-ray photoelectron spectroscopy (XPS). Based on the broadening of (1 1 0) peak from XRD result, the average crystalline size of BTO nanoparticles were calculated to be 16.5 nm. Coexistence of cubic and tetragonal phase of BTO nanoparticles is expected, based on the XRD and Raman results. From XPS result, carbon, barium, titanium, and oxygen peaks were also observed. The combination of CRH with BTO can integrate the properties of these two components to form nanocomposites for broad applications.
ISSN:1757-8981
1757-899X
DOI:10.1088/1757-899X/229/1/012024