Loading…

Study of structure-property relationship in steels based on analysis of EBSD data

In this work, we formulate novel data-driven assays for exploring the structure-property linkages for high-manganese austenitic wear-resistant steel 110G13L (Hadfield steel). Steel 110G13L has the following chemical composition, wt.%: C(0.95-1.50)-Mn(11.5-15.0). These assays are built on recent adva...

Full description

Saved in:
Bibliographic Details
Published in:IOP conference series. Materials Science and Engineering 2019-12, Vol.699 (1), p.12006
Main Authors: Chikova, O A, Chezganov, D S, Yuzhakov, V V, Sinitsin, N I
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this work, we formulate novel data-driven assays for exploring the structure-property linkages for high-manganese austenitic wear-resistant steel 110G13L (Hadfield steel). Steel 110G13L has the following chemical composition, wt.%: C(0.95-1.50)-Mn(11.5-15.0). These assays are built on recent advances in high resolution quantification of material structure using correlations and principal analyses of electron backscatter diffraction (EBSD) data, as well as in the mechanical characterization using nanoindentation. These novel protocols are demonstrated on a steel 110G13L that exhibits various polycrystalline microstructures. A comparative analysis of EBSD data was carried out for samples of manganese steel 110G13L obtained by various methods. Analysis of the diffraction patterns of backscattered electrons allowed us to plot orientation maps, Schmid factor maps and distributions for austenite dendrites. Schmid factor maps are used to determine the degree of homogeneity of a possible deformation. The results of the measurement of hardness and Young's modulus for the austenite dendrites indicate the heterogeneity of the mechanical properties of the material in submicro-volumes due to lattice defects (dislocations) inside the crystallites.
ISSN:1757-8981
1757-899X
DOI:10.1088/1757-899X/699/1/012006