Loading…
A study for an aluminum electro-thermally actuated U-shaped microtweezer
In this paper we present the investigations of two aluminium layers with different thicknesses in order to be used for manufacturing of MEMS and the design, simulation, fabrication and characterizations of a microtweezer designated for micromanipulation applications. Electro-thermo-mechanical finite...
Saved in:
Published in: | IOP conference series. Materials Science and Engineering 2020-01, Vol.724 (1), p.12053 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper we present the investigations of two aluminium layers with different thicknesses in order to be used for manufacturing of MEMS and the design, simulation, fabrication and characterizations of a microtweezer designated for micromanipulation applications. Electro-thermo-mechanical finite-element simulations were performed in order to describe the behaviour of MEMS devices. The microtweezers have been fabricated in aluminium, as structural material, by surface micromachining processes. Different characterizations of the structural material by Atomic Force Microscope (AFM), X-ray Diffraction System (XRD) and Scanning Electron Microscopy (SEM) characterization tools were presented. |
---|---|
ISSN: | 1757-8981 1757-899X |
DOI: | 10.1088/1757-899X/724/1/012053 |