Loading…

On the potential of particle engineered anti-erosion coatings for leading edge protection of wind turbine blades: Computational studies

The potential of particle and fiber reinforced anti-erosion coatings for the protection of wind turbine blades is explored through computational modelling. A hypothesis that stiff disc-shaped particle or fiber reinforcements embedded in viscoelastic coatings ensure better erosion protection is valid...

Full description

Saved in:
Bibliographic Details
Published in:IOP conference series. Materials Science and Engineering 2020-10, Vol.942 (1), p.12027
Main Authors: Jespersen, K M, Monastyreckis, G, Mishnaevsky, L
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The potential of particle and fiber reinforced anti-erosion coatings for the protection of wind turbine blades is explored through computational modelling. A hypothesis that stiff disc-shaped particle or fiber reinforcements embedded in viscoelastic coatings ensure better erosion protection is validated numerically, and mechanisms of this effect are analyzed. A computational unit cell model of coatings with embedded fibers (fiber pulp) or disc particles subject to rain droplet impact is developed, and series of computational experiments is carried out. The distribution and scattering of stress waves from the rain droplet impact and damping properties are analyzed for homogeneous viscoelastic polyurethane coatings, coatings with discshaped particles, and fiber pulp. It is shown that the stress waves are increasingly scattered, and the damping is increased with higher volume percentage of the fibers. The mechanism of such increased energy dissipation is found to be related to the high local viscoelastic deformation in the regions between closely located fibers and the higher stiffness of the unit cell. The current work demonstrates the high potential of fiber engineered coatings for the improvement of anti-erosion protection of wind turbine blades.
ISSN:1757-8981
1757-899X
DOI:10.1088/1757-899X/942/1/012027