Loading…

Hydrogenation and hydrogen intercalation of hexagonal boron nitride on Ni(1 1 1): reactivity and electronic structure

We investigate the reactivity of hexagonal boron nitride (h-BN) on a Ni(1 1 1) single crystal towards atomic hydrogen over a wide exposure range. Near edge x-ray absorption fine structure and x-ray photoelectron spectroscopy (XPS) show that for low hydrogen exposures hydrogenation of the h-BN sheet...

Full description

Saved in:
Bibliographic Details
Published in:2d materials 2017-09, Vol.4 (3), p.35026
Main Authors: Späth, F, Gebhardt, J, Düll, F, Bauer, U, Bachmann, P, Gleichweit, C, Görling, A, Steinrück, H-P, Papp, C
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We investigate the reactivity of hexagonal boron nitride (h-BN) on a Ni(1 1 1) single crystal towards atomic hydrogen over a wide exposure range. Near edge x-ray absorption fine structure and x-ray photoelectron spectroscopy (XPS) show that for low hydrogen exposures hydrogenation of the h-BN sheet is found. In contrast, intercalation of hydrogen between h-BN and the Ni(1 1 1) substrate occurs for high exposures. For intermediate regimes, a mixture of intercalation and hydrogenation is observed. From temperature-programmed desorption and temperature-programmed XPS experiments, we conclude that the hydrogen covalently bound to h-BN is rather stable with a desorption temperature of 600 K, while intercalated hydrogen is desorbing already at 390 K. Further insight into the structural arrangements and the thermodynamics of the system is obtained by comparing our experimental results with extensive density-functional theory calculations. Together with ultraviolet photoelectron spectroscopy measurements, the calculations provide detailed insight into the influence of hydrogenation on the electronic structure of h-BN.
ISSN:2053-1583
2053-1583
DOI:10.1088/2053-1583/aa7d6b