Loading…

Antibacterial Ti-Cu alloy with enhanced mechanical properties as implant applications

The service life as hard tissue implantation for clinical application needs compatible mechanical properties, e.g. strength, modulus, etc, and certain self-healing in case of internal infection. Therefore, for sake of improving the properties of Ti-Cu alloy, the microstructure, mechanical properties...

Full description

Saved in:
Bibliographic Details
Published in:Materials research express 2020-10, Vol.7 (10), p.105404
Main Authors: Yi, ChangBo, Ke, ZunYun, Zhang, Lei, Tan, Jun, Jiang, YeHua, He, ZhengYuan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The service life as hard tissue implantation for clinical application needs compatible mechanical properties, e.g. strength, modulus, etc, and certain self-healing in case of internal infection. Therefore, for sake of improving the properties of Ti-Cu alloy, the microstructure, mechanical properties, corrosion resistance and antibacterial properties of Ti-xCu alloy (x = 2, 5, 7 and 10 wt.%) prepared by Ar-arc melting followed by heat treatment were studied. The results show that the Ti-Cu alloy was mainly composed of -Ti matrix and precipitated Ti2Cu phase. The Cu element mainly accumulates in the lamellar structure and forms the precipitated Ti2Cu phase. As the increase of Cu content, the lamellar Ti2Cu phase increases, the compressive strength and elastic modulus also were altered. The Ti-7Cu alloy exhibited the higher compressive strength (2169 MPa) and the lower elastic modulus (108 GPa) compared with other Ti-Cu alloys. The corrosion resistance of Ti-xCu alloys increases with the increase of Cu content. When the Cu content was greater than 5 wt.%, the value of corrosion current density for Ti-Cu alloy was less than 1 A cm−2, which is also significantly lower than that of CP-Ti. The antibacterial test revealed that only the Ti-Cu alloy with 5 wt.% or greater Cu content could display a strong antibacterial rate against E. coli and S. aureus. Therefore, the prepared Ti-7Cu alloy via heat treatment showed excellent mechanical properties, corrosion resistance, and antibacterial properties, which would meet the replacement of human hard tissue and clinical applications.
ISSN:2053-1591
2053-1591
DOI:10.1088/2053-1591/abc371