Loading…

An assessment of magnesium AZ31 coronary stents manufacture

AZ31 magnesium coronary stents were studied through a manufacturing process chain involving laser cutting, acid pickling, and dip coating. The purpose of this study was to evaluate surface thickness and geometrical dimensions of stents after processing. Stents were dip coated in a solution using PCL...

Full description

Saved in:
Bibliographic Details
Published in:Materials research express 2021-07, Vol.8 (7), p.75403
Main Authors: Nuñez-Nava, Mariana, Vazquez, Elisa, Ortega-Lara, Wendy, Rodriguez, Ciro A, García-López, Erika
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:AZ31 magnesium coronary stents were studied through a manufacturing process chain involving laser cutting, acid pickling, and dip coating. The purpose of this study was to evaluate surface thickness and geometrical dimensions of stents after processing. Stents were dip coated in a solution using PCL with 1% of TiO 2 . Additionally, AZ31 coronary stents were dynamically tested using a degradation system based on peristaltic pumps. Our results indicate that coated stents degraded slower than AZ31 uncoated control stents. After 4 weeks of dynamic degradation under flowing Hank’s solution, coated stents lost only ∼9% in weight while uncoated stents lost ∼27% in weight. Stents were qualitatively evaluated after four weeks of degradation. Our results demonstrate the formation of micro-pores after one and two weeks of degradation for coated stents. Lamination was observed after three weeks of degradation, meanwhile, uncoated stents resulted with notches and an irregular surface caused by degradation.
ISSN:2053-1591
2053-1591
DOI:10.1088/2053-1591/ac16f2