Loading…
An assessment of magnesium AZ31 coronary stents manufacture
AZ31 magnesium coronary stents were studied through a manufacturing process chain involving laser cutting, acid pickling, and dip coating. The purpose of this study was to evaluate surface thickness and geometrical dimensions of stents after processing. Stents were dip coated in a solution using PCL...
Saved in:
Published in: | Materials research express 2021-07, Vol.8 (7), p.75403 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | AZ31 magnesium coronary stents were studied through a manufacturing process chain involving laser cutting, acid pickling, and dip coating. The purpose of this study was to evaluate surface thickness and geometrical dimensions of stents after processing. Stents were dip coated in a solution using PCL with 1% of TiO
2
. Additionally, AZ31 coronary stents were dynamically tested using a degradation system based on peristaltic pumps. Our results indicate that coated stents degraded slower than AZ31 uncoated control stents. After 4 weeks of dynamic degradation under flowing Hank’s solution, coated stents lost only ∼9% in weight while uncoated stents lost ∼27% in weight. Stents were qualitatively evaluated after four weeks of degradation. Our results demonstrate the formation of micro-pores after one and two weeks of degradation for coated stents. Lamination was observed after three weeks of degradation, meanwhile, uncoated stents resulted with notches and an irregular surface caused by degradation. |
---|---|
ISSN: | 2053-1591 2053-1591 |
DOI: | 10.1088/2053-1591/ac16f2 |