Loading…

Investigation on the serrated flow behavior of bulk metallic glasses based on machine learning

This study proposed a long short-term memory (LSTM) model for predicting the serrated flow behaviors of bulk metallic glasses (BMGs) under nanoindentation. A series of load-controlled nanoindentation tests were conducted on a Pd 40 Cu 30 Ni 10 P 20 BMG. The LSTM model was introduced to establish a n...

Full description

Saved in:
Bibliographic Details
Published in:Materials research express 2021-09, Vol.8 (9), p.95202
Main Authors: Zhao, M S Z, Long, Z L, Peng, L
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c447t-992e256595461887f45acd5218dff5295af50745a607c413370762a4dbffeb3c3
cites cdi_FETCH-LOGICAL-c447t-992e256595461887f45acd5218dff5295af50745a607c413370762a4dbffeb3c3
container_end_page
container_issue 9
container_start_page 95202
container_title Materials research express
container_volume 8
creator Zhao, M S Z
Long, Z L
Peng, L
description This study proposed a long short-term memory (LSTM) model for predicting the serrated flow behaviors of bulk metallic glasses (BMGs) under nanoindentation. A series of load-controlled nanoindentation tests were conducted on a Pd 40 Cu 30 Ni 10 P 20 BMG. The LSTM model was introduced to establish a neural network for predicting the serrated flow at different loading rates, and was verified by the comparisons of experimental data with predictive results. Further investigation based on the predictive serrated flows under different loading rates showed that the serrations exhibit a significant self-organized critical (SOC) phenomenon at different loading rates. The SOC phenomena of the serrations under a lower loading rate were more obvious than that under a higher loading rate.
doi_str_mv 10.1088/2053-1591/ac24cd
format article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_iop_journals_10_1088_2053_1591_ac24cd</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_c2c0cb32a76d4a4585416b6b254a84a1</doaj_id><sourcerecordid>2577065229</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-992e256595461887f45acd5218dff5295af50745a607c413370762a4dbffeb3c3</originalsourceid><addsrcrecordid>eNp1kcFrFDEUxgdRsNTePQYET12bvMlLJkcpWhcKXvRqeJNJdrPOTtZktup_b7ZTag8KgYSP7_u98L2meS34O8G77go4tiuBRlyRA-mGZ83Zo_T8yftlc1HKjnMO2rQI6qz5tp7ufJnjhuaYJlbPvPWs-Jxp9gMLY_rJer-lu5gyS4H1x_E72_uZxjE6thmpFF9YT6Waa3hPbhsnz0ZPeYrT5lXzItBY_MXDfd58_fjhy_Wn1e3nm_X1-9uVk1LPK2PAAyo0KJXoOh0kkhsQRDeEgGCQAnJdRcW1k6JtNdcKSA59CL5vXXverBfukGhnDznuKf-2iaK9F1LeWMpzdKO3Dhx3fQuk1SBJYodSqF71gJI6SaKy3iysQ04_jrUcu0vHPNXvW0CtuUIAU118cbmcSsk-PE4V3J6WYk-t21PrdllKjbxdIjEd_jL3-ZftrLHcIHCwhyFU4-U_jP_l_gFC6pmy</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2577065229</pqid></control><display><type>article</type><title>Investigation on the serrated flow behavior of bulk metallic glasses based on machine learning</title><source>Publicly Available Content Database</source><creator>Zhao, M S Z ; Long, Z L ; Peng, L</creator><creatorcontrib>Zhao, M S Z ; Long, Z L ; Peng, L</creatorcontrib><description>This study proposed a long short-term memory (LSTM) model for predicting the serrated flow behaviors of bulk metallic glasses (BMGs) under nanoindentation. A series of load-controlled nanoindentation tests were conducted on a Pd 40 Cu 30 Ni 10 P 20 BMG. The LSTM model was introduced to establish a neural network for predicting the serrated flow at different loading rates, and was verified by the comparisons of experimental data with predictive results. Further investigation based on the predictive serrated flows under different loading rates showed that the serrations exhibit a significant self-organized critical (SOC) phenomenon at different loading rates. The SOC phenomena of the serrations under a lower loading rate were more obvious than that under a higher loading rate.</description><identifier>ISSN: 2053-1591</identifier><identifier>EISSN: 2053-1591</identifier><identifier>DOI: 10.1088/2053-1591/ac24cd</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Amorphous materials ; bulk metallic glass ; Loading rate ; long short-term memory ; Machine learning ; Metallic glasses ; Nanoindentation ; Neural networks ; serrated flow</subject><ispartof>Materials research express, 2021-09, Vol.8 (9), p.95202</ispartof><rights>2021 The Author(s). Published by IOP Publishing Ltd</rights><rights>2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-992e256595461887f45acd5218dff5295af50745a607c413370762a4dbffeb3c3</citedby><cites>FETCH-LOGICAL-c447t-992e256595461887f45acd5218dff5295af50745a607c413370762a4dbffeb3c3</cites><orcidid>0000-0002-0575-4173</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2577065229?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Zhao, M S Z</creatorcontrib><creatorcontrib>Long, Z L</creatorcontrib><creatorcontrib>Peng, L</creatorcontrib><title>Investigation on the serrated flow behavior of bulk metallic glasses based on machine learning</title><title>Materials research express</title><addtitle>MRX</addtitle><addtitle>Mater. Res. Express</addtitle><description>This study proposed a long short-term memory (LSTM) model for predicting the serrated flow behaviors of bulk metallic glasses (BMGs) under nanoindentation. A series of load-controlled nanoindentation tests were conducted on a Pd 40 Cu 30 Ni 10 P 20 BMG. The LSTM model was introduced to establish a neural network for predicting the serrated flow at different loading rates, and was verified by the comparisons of experimental data with predictive results. Further investigation based on the predictive serrated flows under different loading rates showed that the serrations exhibit a significant self-organized critical (SOC) phenomenon at different loading rates. The SOC phenomena of the serrations under a lower loading rate were more obvious than that under a higher loading rate.</description><subject>Amorphous materials</subject><subject>bulk metallic glass</subject><subject>Loading rate</subject><subject>long short-term memory</subject><subject>Machine learning</subject><subject>Metallic glasses</subject><subject>Nanoindentation</subject><subject>Neural networks</subject><subject>serrated flow</subject><issn>2053-1591</issn><issn>2053-1591</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp1kcFrFDEUxgdRsNTePQYET12bvMlLJkcpWhcKXvRqeJNJdrPOTtZktup_b7ZTag8KgYSP7_u98L2meS34O8G77go4tiuBRlyRA-mGZ83Zo_T8yftlc1HKjnMO2rQI6qz5tp7ufJnjhuaYJlbPvPWs-Jxp9gMLY_rJer-lu5gyS4H1x_E72_uZxjE6thmpFF9YT6Waa3hPbhsnz0ZPeYrT5lXzItBY_MXDfd58_fjhy_Wn1e3nm_X1-9uVk1LPK2PAAyo0KJXoOh0kkhsQRDeEgGCQAnJdRcW1k6JtNdcKSA59CL5vXXverBfukGhnDznuKf-2iaK9F1LeWMpzdKO3Dhx3fQuk1SBJYodSqF71gJI6SaKy3iysQ04_jrUcu0vHPNXvW0CtuUIAU118cbmcSsk-PE4V3J6WYk-t21PrdllKjbxdIjEd_jL3-ZftrLHcIHCwhyFU4-U_jP_l_gFC6pmy</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Zhao, M S Z</creator><creator>Long, Z L</creator><creator>Peng, L</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0575-4173</orcidid></search><sort><creationdate>20210901</creationdate><title>Investigation on the serrated flow behavior of bulk metallic glasses based on machine learning</title><author>Zhao, M S Z ; Long, Z L ; Peng, L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-992e256595461887f45acd5218dff5295af50745a607c413370762a4dbffeb3c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Amorphous materials</topic><topic>bulk metallic glass</topic><topic>Loading rate</topic><topic>long short-term memory</topic><topic>Machine learning</topic><topic>Metallic glasses</topic><topic>Nanoindentation</topic><topic>Neural networks</topic><topic>serrated flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, M S Z</creatorcontrib><creatorcontrib>Long, Z L</creatorcontrib><creatorcontrib>Peng, L</creatorcontrib><collection>Open Access: IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Materials research express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, M S Z</au><au>Long, Z L</au><au>Peng, L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigation on the serrated flow behavior of bulk metallic glasses based on machine learning</atitle><jtitle>Materials research express</jtitle><stitle>MRX</stitle><addtitle>Mater. Res. Express</addtitle><date>2021-09-01</date><risdate>2021</risdate><volume>8</volume><issue>9</issue><spage>95202</spage><pages>95202-</pages><issn>2053-1591</issn><eissn>2053-1591</eissn><abstract>This study proposed a long short-term memory (LSTM) model for predicting the serrated flow behaviors of bulk metallic glasses (BMGs) under nanoindentation. A series of load-controlled nanoindentation tests were conducted on a Pd 40 Cu 30 Ni 10 P 20 BMG. The LSTM model was introduced to establish a neural network for predicting the serrated flow at different loading rates, and was verified by the comparisons of experimental data with predictive results. Further investigation based on the predictive serrated flows under different loading rates showed that the serrations exhibit a significant self-organized critical (SOC) phenomenon at different loading rates. The SOC phenomena of the serrations under a lower loading rate were more obvious than that under a higher loading rate.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/2053-1591/ac24cd</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-0575-4173</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2053-1591
ispartof Materials research express, 2021-09, Vol.8 (9), p.95202
issn 2053-1591
2053-1591
language eng
recordid cdi_iop_journals_10_1088_2053_1591_ac24cd
source Publicly Available Content Database
subjects Amorphous materials
bulk metallic glass
Loading rate
long short-term memory
Machine learning
Metallic glasses
Nanoindentation
Neural networks
serrated flow
title Investigation on the serrated flow behavior of bulk metallic glasses based on machine learning
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T20%3A08%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigation%20on%20the%20serrated%20flow%20behavior%20of%20bulk%20metallic%20glasses%20based%20on%20machine%20learning&rft.jtitle=Materials%20research%20express&rft.au=Zhao,%20M%20S%20Z&rft.date=2021-09-01&rft.volume=8&rft.issue=9&rft.spage=95202&rft.pages=95202-&rft.issn=2053-1591&rft.eissn=2053-1591&rft_id=info:doi/10.1088/2053-1591/ac24cd&rft_dat=%3Cproquest_iop_j%3E2577065229%3C/proquest_iop_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c447t-992e256595461887f45acd5218dff5295af50745a607c413370762a4dbffeb3c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2577065229&rft_id=info:pmid/&rfr_iscdi=true