Loading…

Numerical analysis on the effect of process parameters on deposition geometry in wire arc additive manufacturing

Here we develop a two-dimensional numerical model of wire and arc additive manufacturing (WAAM) to determine the relationship between process parameters and deposition geometry, and to reveal the influence mechanism of process parameters on deposition geometry. From the predictive results, a higher...

Full description

Saved in:
Bibliographic Details
Published in:Plasma science & technology 2022-04, Vol.24 (4), p.44001
Main Authors: FAN, Shilong, YANG, Fei, ZHU, Xiaonan, DIAO, Zhaowei, CHEN, Lin, RONG, Mingzhe
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Here we develop a two-dimensional numerical model of wire and arc additive manufacturing (WAAM) to determine the relationship between process parameters and deposition geometry, and to reveal the influence mechanism of process parameters on deposition geometry. From the predictive results, a higher wire feed rate matched with a higher current could generate a larger and hotter droplet, and thus transfer more thermal and kinetic energy into melt pool, which results in a wider and lower deposited layer with deeper penetration. Moreover, a higher preheat temperature could enlarge melt pool volume and thus enhance heat and mass convection along both axial and radial directions, which gives rise to a wider and higher deposited layer with deeper penetration. These findings offer theoretical guidelines for the acquirement of acceptable deposition shape and optimal deposition quality through adjusting process parameters in fabricating WAAM components.
ISSN:1009-0630
2058-6272
DOI:10.1088/2058-6272/ac4f41