Loading…

Relief printing of micron-sized electrical conductive structures on silicon

Copper is the metal of choice for electrical circuits in electronics. It is lower in cost than silver and offers excellent electrical properties like low electrical resistivity and electromigration resistance. Physical vapor deposition and wet-chemical etching or electroforming are the standard proc...

Full description

Saved in:
Bibliographic Details
Published in:Flexible and printed electronics 2017-03, Vol.2 (1), p.14004
Main Authors: Gerke, Sebastian, Zürcher, Jonas, Del Carro, Luca, Chen, Xiaoyu, Brunschwiler, Thomas
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c311t-5ef25614d1721cf5ab92072713aaef471119d63748a4b32fb29be6b16aef7d883
cites cdi_FETCH-LOGICAL-c311t-5ef25614d1721cf5ab92072713aaef471119d63748a4b32fb29be6b16aef7d883
container_end_page
container_issue 1
container_start_page 14004
container_title Flexible and printed electronics
container_volume 2
creator Gerke, Sebastian
Zürcher, Jonas
Del Carro, Luca
Chen, Xiaoyu
Brunschwiler, Thomas
description Copper is the metal of choice for electrical circuits in electronics. It is lower in cost than silver and offers excellent electrical properties like low electrical resistivity and electromigration resistance. Physical vapor deposition and wet-chemical etching or electroforming are the standard processes used to deposit and pattern copper on silicon and in printed-circuit-board technology. Recently, copper inks and pastes have become available for the printing of copper films, with the potential outcome of lowering the production cost beyond that of the established processes. Furthermore, the printing processes are compatible with role-to-role fabrication, and are hence attractive for flexible electronics. In this study, a bi-modal copper paste containing nano- and micro-particles is transferred in a relief printing process by using silicon stamps. It was possible to demonstrate electrical conductive tracks with a linewidth down to 8 m. The spacing between neighboring tracks is related to their width and can be as low as 10 m. It was possible to achieve a sheet resistance of less than 8 m sq-1 after formic-acid-assisted sintering at 180 °C. The low sintering temperature enables the direct placement of electronic components without additional soldering and thus saves time and production costs.
doi_str_mv 10.1088/2058-8585/aa609e
format article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_iop_journals_10_1088_2058_8585_aa609e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>fpeaa609e</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-5ef25614d1721cf5ab92072713aaef471119d63748a4b32fb29be6b16aef7d883</originalsourceid><addsrcrecordid>eNp9UE1LAzEQDaJgqb17zMmTa2eS_cgepfiFBUH0HLLZiaRsd5dkK-ivN6UiHsTTPOa9N7x5jJ0jXCEotRRQqEwVqlgaU0JNR2z2szr-hU_ZIsYNAGBdV1LBjD0-U-fJ8TH4fvL9Gx8c33obhj6L_pNaTh3ZKXhrOm6Hvt3Zyb8Tj1NIaBco8qHn0Xc-kWfsxJku0uJ7ztnr7c3L6j5bP909rK7XmZWIU1aQE0WJeYuVQOsK09QCKlGhNIZcXiFi3ZayypXJGylcI-qGygbLxFatUnLO4HA3xYwxkNMp_daED42g933o_cN6_7A-9JEslweLH0a9GXahTwH_k1_8IXcjaaFRA-YAuR5bJ78AStVvHA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Relief printing of micron-sized electrical conductive structures on silicon</title><source>Institute of Physics</source><creator>Gerke, Sebastian ; Zürcher, Jonas ; Del Carro, Luca ; Chen, Xiaoyu ; Brunschwiler, Thomas</creator><creatorcontrib>Gerke, Sebastian ; Zürcher, Jonas ; Del Carro, Luca ; Chen, Xiaoyu ; Brunschwiler, Thomas</creatorcontrib><description>Copper is the metal of choice for electrical circuits in electronics. It is lower in cost than silver and offers excellent electrical properties like low electrical resistivity and electromigration resistance. Physical vapor deposition and wet-chemical etching or electroforming are the standard processes used to deposit and pattern copper on silicon and in printed-circuit-board technology. Recently, copper inks and pastes have become available for the printing of copper films, with the potential outcome of lowering the production cost beyond that of the established processes. Furthermore, the printing processes are compatible with role-to-role fabrication, and are hence attractive for flexible electronics. In this study, a bi-modal copper paste containing nano- and micro-particles is transferred in a relief printing process by using silicon stamps. It was possible to demonstrate electrical conductive tracks with a linewidth down to 8 m. The spacing between neighboring tracks is related to their width and can be as low as 10 m. It was possible to achieve a sheet resistance of less than 8 m sq-1 after formic-acid-assisted sintering at 180 °C. The low sintering temperature enables the direct placement of electronic components without additional soldering and thus saves time and production costs.</description><identifier>ISSN: 2058-8585</identifier><identifier>EISSN: 2058-8585</identifier><identifier>DOI: 10.1088/2058-8585/aa609e</identifier><identifier>CODEN: NJOPFM</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>copper paste ; micron-sized structures ; SMD connection</subject><ispartof>Flexible and printed electronics, 2017-03, Vol.2 (1), p.14004</ispartof><rights>2017 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c311t-5ef25614d1721cf5ab92072713aaef471119d63748a4b32fb29be6b16aef7d883</citedby><cites>FETCH-LOGICAL-c311t-5ef25614d1721cf5ab92072713aaef471119d63748a4b32fb29be6b16aef7d883</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Gerke, Sebastian</creatorcontrib><creatorcontrib>Zürcher, Jonas</creatorcontrib><creatorcontrib>Del Carro, Luca</creatorcontrib><creatorcontrib>Chen, Xiaoyu</creatorcontrib><creatorcontrib>Brunschwiler, Thomas</creatorcontrib><title>Relief printing of micron-sized electrical conductive structures on silicon</title><title>Flexible and printed electronics</title><addtitle>FPE</addtitle><addtitle>Flex. Print. Electron</addtitle><description>Copper is the metal of choice for electrical circuits in electronics. It is lower in cost than silver and offers excellent electrical properties like low electrical resistivity and electromigration resistance. Physical vapor deposition and wet-chemical etching or electroforming are the standard processes used to deposit and pattern copper on silicon and in printed-circuit-board technology. Recently, copper inks and pastes have become available for the printing of copper films, with the potential outcome of lowering the production cost beyond that of the established processes. Furthermore, the printing processes are compatible with role-to-role fabrication, and are hence attractive for flexible electronics. In this study, a bi-modal copper paste containing nano- and micro-particles is transferred in a relief printing process by using silicon stamps. It was possible to demonstrate electrical conductive tracks with a linewidth down to 8 m. The spacing between neighboring tracks is related to their width and can be as low as 10 m. It was possible to achieve a sheet resistance of less than 8 m sq-1 after formic-acid-assisted sintering at 180 °C. The low sintering temperature enables the direct placement of electronic components without additional soldering and thus saves time and production costs.</description><subject>copper paste</subject><subject>micron-sized structures</subject><subject>SMD connection</subject><issn>2058-8585</issn><issn>2058-8585</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LAzEQDaJgqb17zMmTa2eS_cgepfiFBUH0HLLZiaRsd5dkK-ivN6UiHsTTPOa9N7x5jJ0jXCEotRRQqEwVqlgaU0JNR2z2szr-hU_ZIsYNAGBdV1LBjD0-U-fJ8TH4fvL9Gx8c33obhj6L_pNaTh3ZKXhrOm6Hvt3Zyb8Tj1NIaBco8qHn0Xc-kWfsxJku0uJ7ztnr7c3L6j5bP909rK7XmZWIU1aQE0WJeYuVQOsK09QCKlGhNIZcXiFi3ZayypXJGylcI-qGygbLxFatUnLO4HA3xYwxkNMp_daED42g933o_cN6_7A-9JEslweLH0a9GXahTwH_k1_8IXcjaaFRA-YAuR5bJ78AStVvHA</recordid><startdate>20170301</startdate><enddate>20170301</enddate><creator>Gerke, Sebastian</creator><creator>Zürcher, Jonas</creator><creator>Del Carro, Luca</creator><creator>Chen, Xiaoyu</creator><creator>Brunschwiler, Thomas</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170301</creationdate><title>Relief printing of micron-sized electrical conductive structures on silicon</title><author>Gerke, Sebastian ; Zürcher, Jonas ; Del Carro, Luca ; Chen, Xiaoyu ; Brunschwiler, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-5ef25614d1721cf5ab92072713aaef471119d63748a4b32fb29be6b16aef7d883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>copper paste</topic><topic>micron-sized structures</topic><topic>SMD connection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gerke, Sebastian</creatorcontrib><creatorcontrib>Zürcher, Jonas</creatorcontrib><creatorcontrib>Del Carro, Luca</creatorcontrib><creatorcontrib>Chen, Xiaoyu</creatorcontrib><creatorcontrib>Brunschwiler, Thomas</creatorcontrib><collection>CrossRef</collection><jtitle>Flexible and printed electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gerke, Sebastian</au><au>Zürcher, Jonas</au><au>Del Carro, Luca</au><au>Chen, Xiaoyu</au><au>Brunschwiler, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Relief printing of micron-sized electrical conductive structures on silicon</atitle><jtitle>Flexible and printed electronics</jtitle><stitle>FPE</stitle><addtitle>Flex. Print. Electron</addtitle><date>2017-03-01</date><risdate>2017</risdate><volume>2</volume><issue>1</issue><spage>14004</spage><pages>14004-</pages><issn>2058-8585</issn><eissn>2058-8585</eissn><coden>NJOPFM</coden><abstract>Copper is the metal of choice for electrical circuits in electronics. It is lower in cost than silver and offers excellent electrical properties like low electrical resistivity and electromigration resistance. Physical vapor deposition and wet-chemical etching or electroforming are the standard processes used to deposit and pattern copper on silicon and in printed-circuit-board technology. Recently, copper inks and pastes have become available for the printing of copper films, with the potential outcome of lowering the production cost beyond that of the established processes. Furthermore, the printing processes are compatible with role-to-role fabrication, and are hence attractive for flexible electronics. In this study, a bi-modal copper paste containing nano- and micro-particles is transferred in a relief printing process by using silicon stamps. It was possible to demonstrate electrical conductive tracks with a linewidth down to 8 m. The spacing between neighboring tracks is related to their width and can be as low as 10 m. It was possible to achieve a sheet resistance of less than 8 m sq-1 after formic-acid-assisted sintering at 180 °C. The low sintering temperature enables the direct placement of electronic components without additional soldering and thus saves time and production costs.</abstract><pub>IOP Publishing</pub><doi>10.1088/2058-8585/aa609e</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2058-8585
ispartof Flexible and printed electronics, 2017-03, Vol.2 (1), p.14004
issn 2058-8585
2058-8585
language eng
recordid cdi_iop_journals_10_1088_2058_8585_aa609e
source Institute of Physics
subjects copper paste
micron-sized structures
SMD connection
title Relief printing of micron-sized electrical conductive structures on silicon
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T18%3A52%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Relief%20printing%20of%20micron-sized%20electrical%20conductive%20structures%20on%20silicon&rft.jtitle=Flexible%20and%20printed%20electronics&rft.au=Gerke,%20Sebastian&rft.date=2017-03-01&rft.volume=2&rft.issue=1&rft.spage=14004&rft.pages=14004-&rft.issn=2058-8585&rft.eissn=2058-8585&rft.coden=NJOPFM&rft_id=info:doi/10.1088/2058-8585/aa609e&rft_dat=%3Ciop_cross%3Efpeaa609e%3C/iop_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c311t-5ef25614d1721cf5ab92072713aaef471119d63748a4b32fb29be6b16aef7d883%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true